Virtualized IT Infrastructures and Their Management

Dr. Sven Graupner
Hewlett-Packard Laboratories
Palo Alto, USA
Why is Virtualization such a Topic?

- Because it is being sold to customers with good arguments:
 - Average 10-30% system utilization on Windows and Unix production systems
 - address “Server Sprawl”, IT consolidation, denser environment
 - Improved Production Agility
 - Test and Development Host Optimization
 - Reduction in variation and complexity
 - Servers
 - Desktops
 - Reduce data center TCO
 - Hardware, Electricity, Environmental
 - Disaster Recover / Improved MTTR
 - Restore an image to a target virtual host
Virtualization is Everywhere

- HP c-class Blades with Virtual Connect (VC)

 blades are connected with “Virtual Connect” fabric
 1.5 MLOC firmware with VC manager software for configuring blade connections

- run VMWare/VMotion on VC, both management systems are unaware of one another
Integrated Solutions using Virtualization

FLEXFRAME™ FOR SAP®

Unlock your full potential with FlexFrame for SAP
Our Dynamic Data Center strategy is perceived as a pragmatic way for achieving measurable successes quickly. With our Dynamic IT solution FlexFrame for SAP we have demonstrated this impressively.

FlexFrame for SAP is a pre-integrated and highly efficient IT-infrastructure that dynamically assigns servers to SAP applications on demand.

The SAP software and Linux or Solaris operating system are on a central
Managing Virtualization in IT

“Virtualization is such an old concept, why is there a problem?”

“What is the problem?”

“If there is a problem, how can it be addressed?”
Virtualization

- **Operating system view**
 - Resource abstraction for processes

- **IT infrastructure view**
 - Virtualization describes the separation of a resource or request for a service from the underlying physical delivery of that service (vmware).
 - Pooling and sharing of resources in a data center, including servers, storage and networking (hp).

- **IT services view**
 - Abstraction of IT services from systems

- **Business services view**
 - Abstraction of business functions from IT services
Virtualization

• Operating system view
 – Resource abstraction for processes

• IT infrastructure view
 – Virtualization describes the separation of a resource or request for a service from the underlying physical delivery of that service (vmware).
 – Pooling and sharing of resources in a data center, including servers, storage and networking (hp).

• IT services view
 – Abstraction and separation of IT services from systems

• Business services view
 – Abstraction and separation of business functions from IT services
Processes and Resources

- Single process with exclusive resource
 - underutilizing resources
 - process throughput low (others wait)

- Parallel processes with parallel resources
 - requires multiplication of resources
 - often not economical due to multiplied resource cost

- Parallel processes sharing a resource
 - often a good compromise
 - coordination required between processes
 -> complexity

- Automating and hiding coordination from processes
Virtualization

- Parallel processes with parallel virtual resources

- Virtualization Controller arranges the:
 - multiplication/creation of virtual resources
 - assignment to processes
 - mapping to the underlying physical resource or resources, often by multiplexing

- Ideally, the virtualization controller operates automatically and transparently for processes and resources
Virtualization

- Processes need more than one resource, which may be virtualized as well

- Virtualization Controllers must coordinate based on a global view of the environment

Global view of the environment
Virtualization in Computers

- Virtualization is fully managed by Software (Operating System) in a coordinated way
 - Memory
 - Processors
 - Disks
 - Peripheral devices
Virtualization in IT

• People create and manage virtualized resources
 – Machines
 – Storage
 – Networks

• People also manage physical IT resources

• People are aware of physical and virtual resources, their mgmt systems are not
The Bright Side of IT Virtualization

- Simplified, denser and more streamlined physical IT environment
- Better resource utilization, chance of higher ROI if managed well
- Enhanced capabilities, e.g. easier migration
- Easier provisioning of resources, e.g. for test&dev purposes
The Dark Side of IT Virtualization

• Lack of management practices, skills and systems
• Build-up of virtualization silos and stacks
 – caused by explosion of virtualization capabilities by vendors
• Intransparency
• Intertwined dependencies, unpredictability
 – unpredictable performance due to unknown sharing policies; isolation harder; ripple effects of failures; root cause analysis harder;
• Virtual resource sprawl
 – VMs, disks, networks – easy to create, not identified and registered as inventory, often lost + forgotten
• Physical world may look nice, but the virtual messy
Core Problems in Virtualization Management

- Virtualization Controllers are unaware of one another
- No single, coherent view exists that spans physical and virtual worlds, e.g. needed to assign monitoring data
- Context of virtual or physical resources not captured
- Unclear status of virtual resources wrt existence, identification and ownership (“unassigned”, CI in CMDB)
- Often not seen as managed entities; hence management processes are not applied, e.g. change, release, config
- Lifecycle of virtual resources often undefined, must include design stages, creation, assignment, inactivity, destruction
Core Solutions to Problems
Virtualization Management

• Connect and integrate Virtualization Controllers
• Establish a single, coherent view that spans physical and virtual worlds (Information Model)
• Define context of virtual or physical resources (Topology)
• Recognize status of virtual resources as existent (even if not active), with clear identification and ownership
• Recognize virtual resources as managed entities and apply management processes
• Define lifecycle for virtual resources including design stages, creation, assignment, inactivity, destruction
Problems will not be Solved Anytime Soon

- Subject to enhancements in IT Management practices, standards and systems

- Subject to research in IT Management (e.g., what can be learned from Operating Systems?)
Synergies between OS Concepts + Data Center Infrastructure Management

• **Structural**
 - Layers – application, OS, hardware
 - Components – application, OS, hardware
 - Interfaces – OS, HAL, drivers, component interfaces

• **Functional**
 - user, process, persistent data management, all based on basic resource management (scheduling, sharing, isolation)
 - resource abstraction + creation (OS creates resources by properly configuring hardware components)

• **Organizational**
 - scope of the information maintained by the management system
 - policy (for automated decision making)
Enhancements in IT Management for Virtualization

• Standards:

DMTF VMAN Initiative, Nov’07
http://www.dmtf.org/initiatives/vman_initiative/

DMTF Open Standard for System Virtualization Management Initiative
http://www.dmtf.org/newsroom/pr/view?item_key=70d5d3ba78d39488626f838397a3d1e9812e5d40

• Practices:

ITIL + Virtualization, a number of publications, topic of workshops and conferences, e.g. SVM’08, MANWEEK’08

• Systems:

support emerging, e.g. HP uCMDB discovers and recognizes lifecycle of VM’s
Virtualization + IT Management

Beyond introducing virtualization as a technology, the impact on management practices is often underestimated, such as the impact on:

- Change Management
- Configuration Management
- Release Management
- Incident Management
- Problem Management
- Service Level Management
- Availability Management
- Capacity Management
- Continuity Management
- Financial Management
- Security Management
Virtualization + Change Management

- Can IT manage risks associated with changes to services?
- 80% of availability problems can be tied to human error.
- The ability to deploy a change to a 100 hosts may automate the ability to crash 100 hosts unless careful.
- Risks associated with changes must be managed.
- How will Change Management process handle requests for virtual hosts?
- Is there anything special that must be taken into consideration?
- How can one answer the prime question – “What changed?”
- How can failed changes be rolled back?
Virtualization + Release Management

- Can IT reliably deploy new and changed services into production without negatively impacting the business?
- How will the deployment of virtualization technology be managed?
- Project management, stakeholders, testing, rollout
- How can virtualization enable test and development environments to mirror production?
- How will the deployment of virtual hosts be managed?
- Can images be retained and governed by change management?
- Far faster to build, or rebuild, from an image than manually.
Virtualization + Incident Management

- Can IT assist users in the speedy recovery of services or service requests?
- Does the Service Desk know about proposed changes and the schedule? (Don’t surprise them on Monday morning!)
- Do any scripts need to change when the Service Desk takes a call involving a virtual host? Are there any new questions or branches?
- What training does the Service Desk need?
- What monitoring is needed?
- Do alerts and alarms route through Incident Management?
- How can virtualization reduce MTTR and the Incident lifecycle?
- Occur, Detect, Diagnose, Repair, Recover, Restore Service.
Virtualization + Problem Management

- Are root causes established to address trends and/or prevent incidents from occurring?
- How might virtualization affect root cause analysis?
- What data can be collected from virtual hosts to aid in problem analysis?
- What should problem managers be looking for in terms of proactive problem management?
Virtualization + Capacity Management

- Can IT provision services with adequate capacity to meet the needs of the business both now and in the foreseeable future?
- One of virtualization’s greatest benefits is in improving capacity utilization
- First, understand business capacity requirements
- Regular meetings and review of business planning documents
- What are the IT service capacity requirements needed to meet this?
- What component resource capacity is needed?
- What are target thresholds?
- How can virtualization enable better utilization of capacity?
- How can demand be managed to perhaps reduce capacity escalations?
- Proper SLAs that include Capacity and performance requirements are very beneficial!
Research Related to IT Management for Virtualization

- Understanding aggregated workloads
- Automating virtualization decisions
- Tuning virtualization parameters
- Automating virtualization management
- "Data Center Operating System"
Architecture of a Data Center
Infrastructure Operating System
“Data Center Operating System”

1. User uses a resource composition service to design a custom environment (or selects a pre-configured template).
2. User schedules deployment of application.
3. Resources needed for the deployment are assigned.
4. Service is deployed, and
5. Resources are made available to user.
6. On-line monitoring is used to adjust resources as necessary.
7. Resource availability & utilization is used to improve future decisions.
8. The type/inventory repository tracks any changes in resources.

Complementary technologies
Mapping a Logical Application Configuration into Virtualized IT Infrastructure

- **Access Tier**
 - Internet
 - Edge routers
 - 1st level firewall
 - 2nd level firewall
- **Web Tier**
 - Internet
 - Web page storage (NAS)
 - Web servers
 - Load balancing switches
- **Application Tier**
 - Internet
 - Files (NAS)
 - Application servers
 - Switches
 - Switching pool
- **Database Tier**
 - Internet
 - Database SQL servers
 - Storage area network (SAN)
 - Storage pool

Controller Software

Network Virtualization
- Internet
- Switching pool
- Load balancer pool
- Firewall pool
- Server pool

Server Virtualization

Storage Virtualization
- NAS pool
- Switching pool
- Storage pool
Resource Topology Editor
Resource Constructions

- Resource Atom
- Constructed Resource
 - Aggregation
 - Collection
 - Container
 - Composition (Transformation)
 - Virtual Resource
 - Service Resource
 - Recursive Resource Construction
Resource Construction Example

- **IIS**
 - virt x86
 - host server
 - disk
 - SAN.LID

- **Oracle**
 - virt x86
 - host server
 - disk
 - SAN.LID

- **VMware**
 - image
 - disk
 - SAN.LID

- **Linux**
 - install

- **Windows 2K**
 - install

- **Oracle**
 - install

Logical volumes from SAN device

Requirements for the Information Model

- Information model must capture resource creation relationships
 - at present
 - in the past (to reconstruct history)
 - in future (plan future resource needs)

- Operating systems and IT management systems mainly capture the present state, but little past and future states

- The environment is often assumed to be static. Virtualization breaks this assumption.
Automation

• Purpose of an OS is automating the management of a machine environment.
• Automation in IT often relies on scripts and workflows.

• What are appropriate abstractions and interfaces for automation?
Controller
Automation Controller for Operational IT Management

Based on Desired State / Observed State paradigm

PTN as implementation principle

POC “Adaptive Database” with three automation use cases:
1. Basic provisioning of Oracle 10g on HP blades.
2. Storage auto-correction (attach SAN disk when Oracle detects disk shortage).
3. Response-time guard (make additional blades available to Oracle when load and response time increased).

Controller Composition:
Summary

IT Automation

Virtualisierung

Operating Systems

IT Management

IT Management Prozesse
Summary

- Although the physical world may look clean, the virtual world can be messy.
- The virtual world must be subject to management as is the physical world, which has not widely been recognized in management practices and systems.
- Virtual entities must be identified and managed like physical entities. Context in which they are brought together must be captured (past, present, future).
- Integration and automation of virtualization management is key to lower management cost and complexity.
- Patterns from operating systems can be applied.