
RailCloud: A Reliable PaaS Cloud
for Railway Applications

Bijun Li, Rüdiger Kapitza
TU Braunschweig

{bli,rrkapitz}@ibr.cs.tu-bs.de

The railway network is one of the most critical infrastruc-
tures of a country. In Germany, in addition to Deutsche Bahn
(DB), many small and medium-sized transportation companies
(SMTCs) offer railway services for passenger as well as
freight transport. However, in contrast to DB, SMTCs are often
lack of resources to invest in modern automated control and
safety guarantee systems. When it comes to regional railway
networks with relatively low traffic, the lack of economics of
scale leads to a disadvantage of competition and increased
safety risks (e.g. single-point-of-failure) for the SMTCs.

RailCloud is a reliable and highly available Platform as
a Service (PaaS) cloud, delivering a computing platform,
including operating system, programming-language runtime,
database and web server etc., without requiring any resource
investments or maintenance tasks of the underlying infras-
tructure. Besides the cost-effective advantage, RailCloud also
provides strong safety guarantee to the SMTCs. A systematic
approach that combines advanced software and cutting-edge
hardware technologies is developed to deliver reliable cloud
services, addressing the security, availability and fault toler-
ance issues of the deployed railway applications. RailCloud is
built upon container-based PaaS clouds, where applications
are deployed in containers with essential software runtime
environment, and related containers are coordinated to pro-
vide services to the clients. The architecture of RailCloud is
demonstrated in Fig. 1.

Client 1

Trusted 
Proxy

Trusted 
Proxy

Trusted 
Proxy

Trusted 
Proxy

BFT Replica BFT Replica BFT Replica BFT Replica

Railway 
App 

Replica

Client 2

RailCloud

Railway 
App 

Replica

Railway 
App 

Replica

Railway 
App 

Replica

Fig. 1. RailCloud architecture.

RailCloud extends the PaaS clouds by adding a BFT service
layer and a trusted proxy layer to each application (see
Fig. 1). The BFT service layer consists of multiple BFT
protocol instances (BFT replicas), where each one is connected

This work is supported by Siemens international Rail Automation Graduate
School (iRAGS).

to a replicated application instance (application replica) and
coordinated to reach consensus on the sequence of incoming
requests. The trusted proxy layer includes individual proxies
to provide secure connections to the application clients as well
as trustworthy services to the BFT replicas.

RailCloud is implemented with an open-source cloud Open-
Shift Origin v31 and uses the existing facilities as much
as possible. High availability and reliability is achieved by
generating replicated application instances and using state ma-
chine replication-based protocols to coordinate them. Byzan-
tine Fault Tolerance (BFT) protocol2, which tolerates Byzan-
tine failures in distributed systems, has been integrated into
RailCloud as a built-in service for customers to build the BFT
service layer. Replicas of customer applications are created and
automatically connected to each BFT replica to execute the
ordered requests and eventually deliver fault-tolerant services.

Additionally, RailCloud aims to simplify the deployment of
legacy railway applications. It offloads the BFT client library
and relocates it in each trusted proxy inside RailCloud to
make the replicated systems transparent to the application’s
clients. Therefore most of the web-based applications can be
deployed in RailCloud without modifications, making it very
friendly to the low-bandwidth clients and secure as well in
terms of hiding server side details. In RailCloud, a hardware-
based secure component from Intel, called Software Guard
Extensions (SGX)3 is used for building the trusted proxies.
Each proxy has the following functions: 1) It provides common
secure socket connections that cannot be forged by malicious
replicas, for the clients to transfer each single request or
reply message. 2) It protects the integrity of the BFT client
library functions, such as request distributing and reply voting,
from being manipulated by malicious replicas. 3) Moreover,
it maintains a fast-read cache for the write-operation requests,
and performs fast reads if the cached data for a read request
exist. All the write operations are forced by RailCloud to
keep the cached data up-to-date, to avoid continuous stale
reads from malicious replicas. This way, RailCloud is able
to provide linearizability semantics to the replicated services
and reduce cost of replicated system, which makes it attractive
to the SMTCs to deploy their critical applications.

1Openshift Origin v3. https://github.com/openshift/origin
2Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proc. of

the 3rd USENIX Symp. on Operating Systems Design and Implementation
(OSDI 99). pp. 173186 (1999)

3Intel Software Guard Extentions. https://software.intel.com/en-us/sgx


