Energy-Efficient Building Blocks For Rack Scale Computing Work In Progress

Rami Alkubaty

Contents

- Motivation
- Approach
- Initial Experiments and First Insights
- Next Steps

Motivation

- Rack scale systems are present or will be present in various business domains
- Various requirements
 - Energy efficiency
 - Performance
 - Cost
 - ...and many others
- Various load characteristics from very static to highly fluctuating

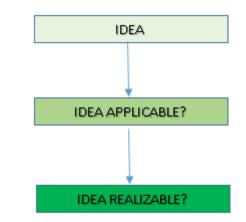
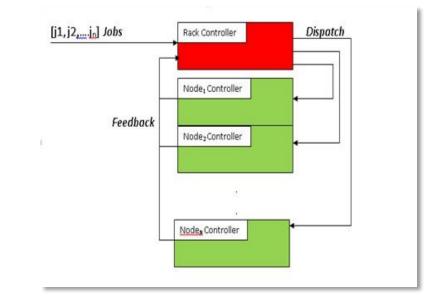


Image: http://www.techrepublic.com

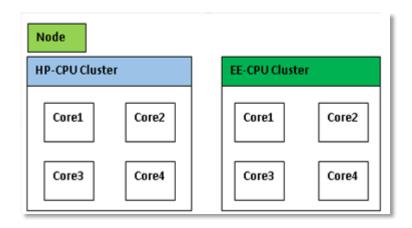
Motivation: Our Focus

- Unit of consideration: The rack
- It gets load
 - from customers, or
 - datacenter coordinator
- We consider scenarios with
 - Highly fluctuating load
 - Individual target requirements
 - High performance
 - Energy efficiency
 - Different tradeoffs between energy and performance
 - Dynamic changes of these requirements



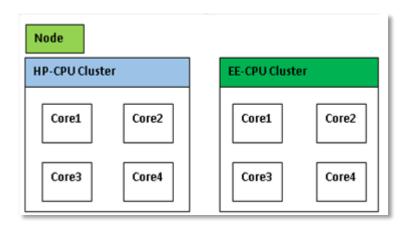
Approach: High Level

- Tasks associated with information about energy-performance trade-off
- Two-level control system:
 - Rack controller:
 - coarse grained load distribution
 - Node Controller:
 - fine grained decision how to deal with load
 - Feedback channel:
 - reports on load-status
 - "evaluates" RC decision


• FOCUS: NODE

Approach: Heterogeneity

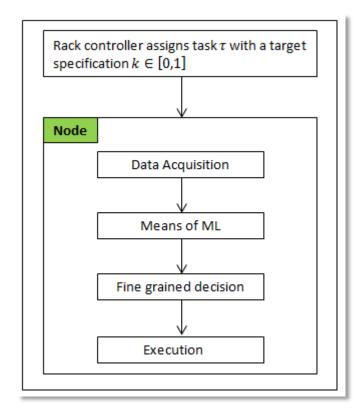
- Heterogeneity is the way to go!
- Rack: different computers
 - We are NOT considering this
- Node:
 - heterogeneous processors having the same ISA (Instruction Set Architecture)



Approach: Challenge

How to use heterogeneous processors efficiently?

There is no magic receipt! Analysis (Statistical, heuristic,...)?


No, our approach considers the system as a black-box

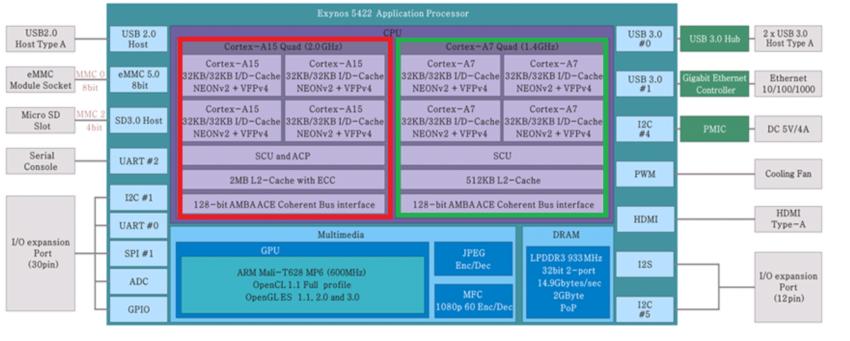
Approach: Black Box

- Black box can be realized by the means of Machine Learning
- Using Machine Learning means we need to:
 - know if patterns exist if so:
 - acquire data
 - build mathematical model
- Data Acquisition: Performance Monitoring Counters (PMCs) (and Energy measurements)
- Mathematical Model: Unsupervised Learning (later on!)

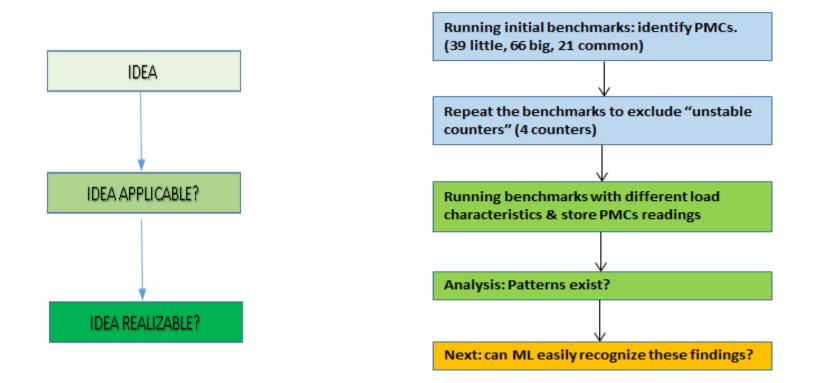
Approach: Summary

• We think:

- i) Tackling energy-efficiency & performance tradeoff with CPU heterogenity (same ISA) within the node
- ii) Considering systems (also Rack Scale Systems) as **black box** to decouple diversity & rapid development



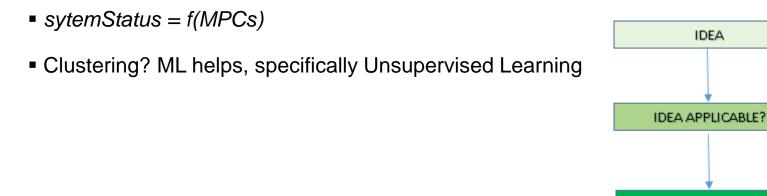
- Bear in mind this work still in progress!
- We are still in the very early phases where we are trying to find out if this works!
- Our work is inspired by (but not based on):
- Josep LI. Berral et. al., 2010
 "Towards energy-aware scheduling in data centers using machine learning"
- Matthew J. Walker et. al. 2016
 "Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs"
- A. Weisel, F. Bellosa, 2002
 "Process cruise control: event-driven clock scaling for dynamic power management"


• Experiments:

+ Hardkernel Odroid xu4 (image: http://hardkernel.com)

ODROID-XU4 BLOCK DIAGRAM

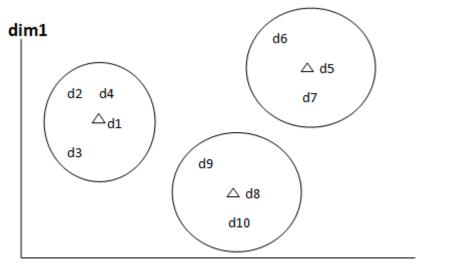
Fachhochschule Südwestfalen University of Applied Sciences


- Huge data samples.
- Empirical analysis does not show the insights all the time.
- We rely on ML

Counter Reading	
13073	CPU
14559	
188983	
154874268	Memory
156230925	
156255750	

Counter Reading	
2322	CPU
2453	
10744	???
21592	???
101477746	Memory
155967195	

- WE need to observe how PMC behave when apply different on the system
- Is PMCs grouping possible? Is it unique? What is the system status thereby?

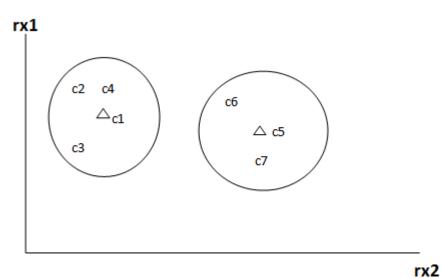


IDEA REALIZABLE?

Initial Experiments And First Insights Unsupervised Learning

- Contrary to Supervised Learning we do not need trained labeled dataset
- In unsupervised learning we are trying to draw inferences from unlabeled dataset
- SL → Classification, USL → Clustering (KNN: K Nearest Neighbors)
- D1= [a1, b1, c1] D2= [a2, b2, c2]

Dn=[an, bn, cn]



dim2

Initial Experiments And First Insights Unsupervised Learning

- How this would look like? An overview (rather a very simplified one in 2D)
 We consider the case when the system is lightly unloaded
- N-dataset of PMCs readings
- c1 = [r11, r12]
- c2 = [r21, r22]
- cn = [rn1, rn2]
- rx1 = counter's reading per million cycles when running CPU bound application.
- rx2 = counter's reading per million cycles when running memory bound application

Next Steps

- We continue developing the approach:
 - adding energy measurements to the existing set of experiments.
 - using more complex benchmarks with known but fluctuating behavior.
 - developing ML model
- Evaluation and comparison to related works
- Eventually, we will be glad to present the results in "Herbsttreffen 2017"!
- Beyond this step, if results are found promising we will delve into sophisticated techniques like "Reinforcement learning".

