

Optimizing Energy Efficiency and Quality of Service in Large Scale Web Server Environments

2016-10-07 Fachgruppe Betriebssysteme - Herbsttreffen

> Simon Kiertscher, Bettina Schnor University of Potsdam

Outline

- Motivation
- Energy Saving Daemon (CHERUB)
- Cluster Simulator (ClusterSim)
- Parameter Study
- Conclusion

Components of a Server-Load-Balancing (SLB) Cluster

Outline

- Motivation
- Energy Saving Daemon (CHERUB)
- Cluster Simulator (ClusterSim)
- Parameter Study
- Conclusion

Motivation

- 30% of servers world-wide are *comatose* according to [1] (2015, Stanford) and [2] (2008, Uptime Institute)
- Corresponds to 4GW
 The most power full nuclear power plant block on earth generates 1.5GW

https://de.wikipedia.org/wiki/Datei:Chooz_Nuclear_Power_Plant-9361.jpg

Motivation

- Energy has become a critical resource in cluster designs
- Demand of energy is still permanently rising
- Strategies for saving energy:
 - 1. Switch off unused resources
 - 2. Virtualization
 - Effective cooling (e.g. build your cluster in north Sweden like Facebook did)

Outline

- Motivation
- Energy Saving Daemon (CHERUB)
- Cluster Simulator (ClusterSim)
- Parameter Study
- Conclusion

Cherubs functionality

- Centralized approach no clients on back-ends
- Daemon located at master node polls the system in fixed time intervals to analyze its state
 - Status of every node
 - Load situation
- Depending on the state of the nodes, saved attributes and the load prediction, actions are performed for every node
- Online system we don't need any information about future load

Outline

- Motivation
- Energy Saving Daemon (CHERUB)
- Cluster Simulator (ClusterSim)
- Parameter Study
- Conclusion

Simulation - ClusterSim Architecture

Scalability Evaluation of an Energy-Aware Resource Management System for Clusters of Web Servers Kiertscher, Schnor

International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), Chicago, USA, July 2015

Simulation - Energy accounting

- Using real data from SPECpower_ssj 2008 Benchmark (Systems from 2007-2015)
- No data about STR, Boot or Shutdown consumption

ClusterSim - Features

- Round-robin scheduler with 100ms time quantum
- Simulation of the Apache MPM Modules
- Bulk arrivals and TCP-Backlog Queue (BLQ) checks every second (no typical discrete event driven simulation)
- Energy modeled based on utilization and real data

ClusterSim - Missing Features

- No modeling of system noise (easy to integrate)
- No concurrent resource access

Normal Setup

Simulation Setup

Outline

- Motivation
- Energy Saving Daemon (CHERUB)
- Cluster Simulator (ClusterSim)
- Parameter Study
- Conclusion

Used Metrics

- Quality of Service (QoS) in % using a 5 second timeout
- Request duration (RD) in milliseconds including waiting and processing time
- Energy consumption (EC) in Wh / Energy saved (ES) in %
- Number of physical state changes (PSCs) defined as the process to either turn on or turn off a node
- Score, a weighted ranking of the other 4 metrics

Score Strategies

- Scores weighted ranking is done according to 3 different strategies
 - High Performance Provider (HP) prioritizes QoS and RD
 - Low Cost Provider (LC) prioritizes EC/ES and PSC
 - Balanced System (B) prioritizes QoS and EC/ES

Varied Factors

- Boot duration of the nodes:
 5, 30, 60, 120, 180 seconds
- Used backup:
 0, 5, 10, 25 %
- Shutdown strategy: aggressive or one-by-one
- Explicit wait before boot:
 0 or 1 minute

20

Used Workload and Optimum regarding EC/ES

- Peak load situation \rightarrow Worst Case
- Derived from real trace

Used Workload and Optimum (5 seconds boottime)

Used Workload and Optimum (60 seconds boottime)

22

Used Workload and Optimum (3 minutes boottime)

Reference without CHERUB

 All nodes active and running achieves QoS 98,67 % and EC of 3214,5 Wh

	QoS	EC in Wh	ES in %	PZW
Reference	98,67 %	3214,5	-	-
Optimum 5	-	2255,0	29,9	1094
Optimum 30	-	2477,3	22,9	404
Optimum 60	-	2604,8	19,0	249
Optimum 120	-	2734,2	14,9	215
Optimum 180	-	2862,1	11,0	181

One out of 80

25

One out of 80

26

Results QoS

Seq. Abs. 1, Warten 0	ж	Seq. Abs. 1, Warten 1	
Seq. Abs. auto, Warten 0	+	Seq. Abs. auto, Warten 1	×
Referenzszenario		-	

Results Energy Saving

Seq. Abs. auto, Warten 1	×	Seq. Abs. 1, Warten 1	
Seq. Abs. auto, Warten 0	+	Seq. Abs. 1, Warten 0	ж
Optimale Einsparung			

ES vs QoS

auto. sh., wait 0	+	seq. sh., wait 0	ж
auto. sh., wait 1	×	seq. sh., wait 1	

Score - Parameter Settings

strategy	boot duration in s	score	shutdown	wait in min	backup in %
	5	70.3	seq.	0	25
	30	66.5	seq.	0	25
HP	60	63.6	seq.	0	25
	120	56.9	seq.	0	25
	180	53.1	seq.	0	25
	5	61.0	seq.	1	0
	30	60.5	seq.	1	0
LC	60	56.3	seq.	1	0
	120	49.2	seq.	1	0
	180	43.1	auto.	1	0
	5	55.4	auto.	0	10
В	30	50.8	auto.	0	10
	60	47.8	auto.	0	10
	120	41.1	auto.	1	25
	180	33.9	auto.	1	10

Score - Results

strategy	boot duration in s	score	QoS in %	ES in %	Optimum Saving	RD in ms	PSCs	shutdown	wait in min	backup in %
	5	70.3	98.70	13.63	29.9	67	123	seq.	0	25
	30	66.5	97.77	13.42	22.9	79	135	seq.	0	25
HP	60	63.6	97.16	11.44	19.0	78	159	seq.	0	25
	120	56.9	94.63	10.02	14.9	81	156	seq.	0	25
	180	53.1	92.32	10.64	11.0	80	148	seq.	0	25
	5	61.0	84.56	32.60	29.9	548	94	seq.	1	0
	30	60.5	83.42	31.58	22.9	430	89	seq.	1	0
LC	60	56.3	83.13	30.12	19.0	401	105	seq.	1	0
	120	49.2	82.30	29.76	14.9	527	124	seq.	1	0
	180	43.1	78.00	34.25	11.0	1452	180	auto.	1	0
	5	55.4	96.99	28.08	29.9	574	199	auto.	0	10
	30	50.8	96.00	26.37	22.9	619	219	auto.	0	10
В	60	47.8	94.73	26.08	19.0	658	211	auto.	0	10
	120	41.1	92.07	22.29	14.9	211	174	auto.	1	25
	180	33.9	84.66	28.74	11.0	626	173	auto.	1	10

Score - Results

strategy	boot duration in s	score	QoS in %	ES in %	Optimum Saving	RD in ms	PSCs	shutdown	wait in min	backup in %
	5	70.3	08 70	13.63	20.0	67	123	200	0	25
	30	10.5	90.70	13.05	29.9	70	125	seq.	0	25
	30	00.5	97.77	15.42	22.9	/9	135	seq.	0	25
HP	60	63.6	97.16	11.44	19.0	78	159	seq.	0	25
	120	56.9	94.63	10.02	14.9	81	156	seq.	0	25
	180	53.1	92.32	10.64	11.0	80	148	seq.	0	25
	5	61.0	84.56	32.60	29.9	548	94	seq.	1	0
	30	60.5	83.42	31.58	22.9	430	89	seq.	1	0
LC	60	56.3	83.13	30.12	19.0	401	105	seq.	1	0
	120	49.2	82.30	29.76	14.9	527	124	seq.	1	0
	180	43.1	78.00	34.25	11.0	1452	180	auto.	1	0
	5	55.4	96.99	28.08	29.9	574	199	auto.	0	10
	30	50.8	96.00	26.37	22.9	619	219	auto.	0	10
В	60	47.8	94.73	26.08	19.0	658	211	auto.	0	10
	120	41.1	92.07	22.29	14.9	211	174	auto.	1	25
	180	33.9	84.66	28.74	11.0	626	173	auto.	1	10

Score - Results

strategy	boot duration in s	score	QoS in %	ES in %	Optimum Saving	RD in ms	PSCs	PSCs in Optimum Case	shutdown	wait in min	backup in %
	5	70.3	98.70	13.63	29.9	67	123	1094	seq.	0	25
	30	66.5	97.77	13.42	22.9	79	135	404	seq.	0	25
HP	60	63.6	97.16	11.44	19.0	78	159	249	seq.	0	25
	120	56.9	94.63	10.02	14.9	81	156	215	seq.	0	25
	180	53.1	92.32	10.64	11.0	80	148	181	seq.	0	25
	5	61.0	84.56	32.60	29.9	548	94	1094	seq.	1	0
	30	60.5	83.42	31.58	22.9	430	89	404	seq.	1	0
LC	60	56.3	83.13	30.12	19.0	401	105	249	seq.	1	0
	120	49.2	82.30	29.76	14.9	527	124	215	seq.	1	0
	180	43.1	78.00	34.25	11.0	1452	180	181	auto.	1	0
	5	55.4	96.99	28.08	29.9	574	199	1094	auto.	0	10
	30	50.8	96.00	26.37	22.9	619	219	404	auto.	0	10
В	60	47.8	94.73	26.08	19.0	658	211	249	auto.	0	10
	120	41.1	92.07	22.29	14.9	211	174	215	auto.	1	25
	180	33.9	84.66	28.74	11.0	626	173	181	auto.	1	10

Outline

- Motivation
- Energy Saving Daemon (CHERUB)
- Cluster Simulator (ClusterSim)
- Parameter Study
- Conclusion

Conclusion

- Strategy works in 100 node SLB-Setup
- Results are very close to the optimum (with fast hardware)
- Boot duration is a critical factor
- Backup has a linear influence on QoS and EC
- Aggressive shutdown can save up to 12,9 % extra energy in the peak load scenario
- Extra waiting time is not necessary if load forecasting is used

Thank you for your attention! Any Questions?

Contact: kiertscher@cs.uni-potsdam.de www.cs.uni-potsdam.de

Sources

- [1] "New data supports finding that 30 percent of servers are 'Comatose', indicating that nearly a third of capital in enterprise data centers is wasted" by Jonathan Koomey and Jon Taylor, 2015
- [2] "Revolutionizing Data Center Energy Efficiency" by James Kaplan, William Forrest, Noah Kindler, 2008

Backup

Cloud ?

 Smallest dedicated hardware instance at Amazon (Linux on m4.large Dedicated) costs
 5747 USD for on month (50 % utilization)

Consumtion in Watt/s

EC

Seq. Abs. auto, Warten 1	×	Seq. Abs. 1, Warten 1	
Seq. Abs. auto, Warten 0	+	Seq. Abs. 1, Warten 0	ж
Optimaler Verbrauch		-	

FRT

Seq. Abs. auto, Warten 1	×	Seq. Abs. 1, Warten 1	
Seq. Abs. auto, Warten 0	+	Seq. Abs. 1, Warten 0	ж

PSC

