Software-Defined Physical Memory:
Putting The OS in Control of DRAM

Marius Hillenbrand

OS Group — Karlsruhe Institute of Technology

os@itec.kit.edu

Dynamic Random Access Memory (DRAM) is the
ubiquitous technology for main memory today. While
that name still suggests identical access times inde-
pendent of location, the latencies and throughput ob-
served in contemporary DDR3 and DDR4 DRAM
memory systems depend on access patterns, how-
ever: Address locality, request ordering, and the rela-
tion of subsequent requests’ addresses can change the
achieved bandwidth by more than an order of magni-
tude.

On the one hand, achieving high single-thread per-
formance requires (a) exploiting the parallelism in the
DRAM structure by overlapping the processing of re-
quests, and (b) avoiding bank conflicts, which can
multiply the service time for individual requests by
“3x. On the other hand, when concurrent tasks run
on multicore systems, they compete for the shared re-
sources in the common DRAM subsystem. Requests
of different tasks then interfere because of rate limits,
such as maximum command and data rates of mem-
ory busses, and penalties for conflicting accesses, such
as high latencies for bank conflicts. This interference
can both degrade system throughput and reduce indi-
vidual tasks’s performance unevenely (depending on
application’s characteristics).

Several techniques have been proposed to both im-
prove single-thread performance and cope with inter-
ference in DRAM-based memory systems. Yet to-
day, operating systems (OSs) are largely agnostic to
DRAM structure. Page allocation is mostly con-
cernced with space, considering all page frames in
physical memory as equal. We argue that an OS
should manage DRAM-based main memory as a pro-
cessing resource in addition to its spatial character.
Main memory subsystems form complex hierarchies of
shared and parallel resources, of which each physical
page frame covers a subset: The physical frame num-
ber defines which DRAM channels, ranks, and banks
the physical addresses within that page frame can ad-
dress. Thus, each page allocation decision is unavoid-
ably an admission decision, in addition to a spatial

allocation. As mediating access to shared resources
forms a core task of an OS, we are convinced that
operating system research should be aware of this ad-
ditional facet in memory management. An OS should
take explicit control of this admission process.

For informed placement decisions, the OS first re-
quires knowledge about how physical addresses map
to the underlying DRAM structure. To make such
designs practical, we propose a standardized firmware
interface that describes the system-specific mapping.
Today, retrieving this information for the OS requires
repeated development effort for each new platform,
with varying amounts of reverse-engineering—a viable
option only for research prototypes.

Previous designs for paging-based performance iso-
lation required that the OS fully controls the map-
ping of virtual memory addresses to the physical en-
tities of DRAM memory, such as channels and banks:
Channel and bank addresses need to be controlled by
high-order address bits, outside the page offset, so that
the OS can define which page gets to reside on which
channel by assigning appropriate physical frames. In
contrast, channel and bank interleaving improves ap-
plication performance by mapping channel and bank
to low-order address bits. As a consequence, systems
can either support OS-controlled DRAM performance
isolation or provide high memory parallelism to appli-
cations, but not both at the same time.

We propose to overcome this limitation by introduc-
ing mapping aliases: A system’s DRAM memory ap-
pears in the physical address space as multiple regions,
or aliases. Each of these aliases employs a different
scheme in mapping physical addresses to DRAM ad-
dresses (i.e., channel, rank, bank, row, and column).
By choosing the right alias when allocating memory,
the OS can vary how much control it keeps for page
allocation (i.e., in high-order address bits) and how
much memory parallelism it exposes to applications
(i.e., in low-order bits) on a page by page basis, dy-
namically at run time. For example, it could provide
one application with two-way channel interleaving and



dedicate another memory channel to a second appli-
cation for performance isolation.

We present a prototype of mapping aliases on off-
the-shelf hardware, which supports configuring aliases
out of the box. Further, we argue that mapping aliases
could be supported on a wide range of production
hardware platforms with minimum modifications. Our
approach is orthogonal to page-based virtual memory,
because it applies to the translation from physical ad-
dresses to DRAM addresses. Thus, they can be ap-
plied independent of page size.

While providing new opportunities, our proposal
raises new challenges for memory management be-
cause it invalidates two key assumptions of page-based
virtual memory:

e The physical address space and physical main
memory are no longer isomorph, so allocation can
no longer rely on physical addresses as an identi-
fier for space in memory.

e Physical page frames are not always contiguous:
when allocated as contiguous page in one map-
ping alias, they will appear as a set of page frame
stripes in each alias with different interleaving.
Thus, careless allocation could disable an alias
by fragmenting all page frames as seen from that
alias.

In our talk, we motivate the need for DRAM-aware
operating systems and discuss how informed memory
management helps to cope with performance interfer-
ence. Then, we present our prototype and sketch how
to adapt page-based memory management for systems
with flexible address mapping.



