
Challenges for Operating Systems arising from
Manycore Architectures and their Solutions in

MyThOS

Vladimir Nikolov Lutz Schubert
Stefan Bonfert

Inst. of Inform. Resource Management ∗

Ulm University
D-89069 Ulm, Germany

December 2016

Keywords: Operating System, HPC, MyThOS, Manycore

Abstract
While heading towards exascale computing by resource replication the coordina-

tion of consumers, i.e. throughput oriented processes and applications, becomes even
more challenging for the involved operating and runtime systems. Highly elastic and
parallel HPC applications require clever strategical decisions for the decomposition
and placement of computations and particular functions, an almost non-disruptive task
and process coordination, fast allocation and clean-up of ressources, and dynamic re-
configuration and adaptation mechanisms of the management and computing infras-
tructure. It turns out that modern operating systems and runtime environments only
partly fulfill these requirements, which leads to suboptimal resource utilization and
throughput and hinders the overall performance gain by effective parallelization.

This talk will summarize experiences and solutions which were gathered and de-
veloped during the course of the MyThOS project [1]. The project was funded by the
German Federal Ministry of Education and Research (BMBF) since 2013. It aimed
at the development of a new minimal and scalable operating system for throughput
oriented and highly parallel HPC applications, such as molecular and fluid dynamics
simulations. The focus was set on manycore architectures such as the Intel Xeon PhiTM

Co-Processor which in its Knights Corner version consist of 60 cache-coherent cores

∗This research has been supported by BMBF under Grant No.01/H13003 (MyThOS) and EU FP7-
ICT-2013.3.4 Project ref:610686 (POLCA)

1



with 4 hardware threads per each core. Severeal issues were identified with respect to
the runtime coordination of processes and tasks on such architectures, as it is realized
by modern operating systems. Those can be generally categorized as follows:

1. Heavy Process & Thread Environments: with a lot of kernel module dependen-
cies, leading to long instantiation and activation times.

2. Runtime Overhead of the OS: with respect to in-kernel synchronization, task
coordination, inter-process communication and resource allocation and clean-up.

3. Time Multiplexing: leading to suboptimal task preemptions, cache pollution and
costly TLB invalidations.

In this talk we will descend into those particular categories and the respective is-
sues, giving a brief overview of their solutions in already existing OSs and runtime
environments. Some of these solutions are more or less convenient for the HPC appli-
cation domain, while others are obstructive. However, the different approaches gen-
erally motivate different kernel designs (e.g. microkernel, multikernel, hybrid-kernel,
etc.) and processing models, which will be compared from the perspective of highly
parallel and elastic HPC applications. On each level, we will explicitly refer to the
particular solutions for which we decided and that were integrated into MyThOS.

In summary, MyThOS implements a highly configurable hybrid of a micro- and a
multikernel, which can be dynamically adapted to differend load and resource utiliza-
tion scenarios. First of all, a shared base kernel with basic functionality for memory
management, IPC, interrupt handling and task scheduling is mapped into the address
space of each process and thread. Furthermore, applications can dynamically extend
their view of the kernel by placing own performance critical objects into a preconfig-
ured “untyped” kernel space. This offers a new palette of online decisions and dy-
namic reconfigurations, for example of functional placement, replication, offloading,
invocation delegation and dynamic load balancing. On the other side, fine-grained
synchronization mechanisms on kernel object level diminish the probability of in-
kernel task serialization. Thereby, object dependencies and invocation capabilities are
managed via a shared resource inheritance tree, which allows for a fine-grained de-
pendency tracking and a fast resource clean-up. Furthermore, MyThOS implements
an own processing and task model, in which system functions decompose into a set
of short-running asynchronous tasks. Tasks can be transmitted to particular objects
and processing units and thus provide a very lightweight IPC-mechanism based on
functors and continuations. It is useful for work delegation to explicit specialized lo-
cations, which improves the overall cache locality and system performance. In this
talk, besides depicting concrete concepts and their realization, we will also provide
first benchmarks for thread creation and activations costs, as well as for different com-
munication patterns between kernel objects.

Having full control about the functional distribution and kernel configuration, ob-
ject placement and task delegation have a crucial impact on the performance of the

2



system. As a future work we will extend our system with a special task-based applica-
tion model, which will allow the OS to better understand task-interdependencies and
to predict their communication and interaction patterns. This information will be ex-
ploited by a special compiler that will automatically establish an optimal initial appli-
cation and system configuration, i.e. the separation and location of objects, tasks and
system functions, with respect to pecularities of the particular underlying hardware ar-
chitecture. Thereby, related and frequently communicating tasks can be grouped and
settled on nearby processing units and cores, e.g. in order to exploit shared caches and
shorter interconnection links between processing units for lower interaction latencies.
However, since actual workload depends on the processed data, load variations are
possible even in HPC applications and may lead to jitter, higher computation latencies
and lower throughput. For that reason, as previously explained, MyThOS has been
designed to be dynamically reconfigurable and highly customizeable to different load
scenarios, i.e. it provides mechanisms for object replication, function offloading and
invocation forwarding allowing to dynamically balance and smooth load fluctuations.

Besides this, MyThOS provides a basis platform for further improvements and re-
search. For example, we plan an extension of its processing and task model with
real-time capabilities and scheduling mechanisms, in order to support interactive HPC
scenarios. These are scenarios, where the user can iteratively intervene during the
computations in order to adjust and fine-tune their results. Consequently, user inter-
actions are bound to a timelined processing and response by the system. Potential use
cases are interactive simulations and rapid prototyping scenarios that can be found in
the areas of automotive solutions, aerospace and robotics. For this, we will extend the
Real-Time Divisible Load Theory [3, 2] which provides a basic computational model,
axioms and formal analysis methods for parallel applications in distributed clustes.
We will extend these models with hierarchical real-time scheduling and vertical as
well as horizontal scaling mechanisms, in order to support interleaved job execution,
to minimize the scheduling overhead for tasks and to maximize the cluster utilization,
while still ensuring timeliness of results. These topics will be covered in the talk more
formally as a work in progress.

References

[1] MyThOS - Operating System for Massively Threaded Applications.
https://manythreads.github.io/mythos/, December 2016.

[2] S. Chuprat and S. Baruah. Real-time divisible load theory: Incorporating com-
putation costs. In 2011 IEEE 17th International Conference on Embedded and
Real-Time Computing Systems and Applications, volume 1, pages 33–37, 2011.

[3] X. Lin, A. Mamat, Y. Lu, J. Deogun, and S. Goddard. Real-time scheduling
of divisible loads in cluster computing environments. Journal of Parallel and
Distributed Computing, 70(3), 2010.

3


