OptSCORE

Self-Optimized Communication of Replicated
Services

/I\J-I/‘U Outline
/r« P OptSCORE: Self-Optimized Communication of Replicated Services

1. Motivation
2. OptSCORE

3. Architecture

4. Optimizations
5. Weighted Voting

March 2, 2017 1

U Motivation

/Itu/‘
/f(‘ P OptSCORE: Self-Optimized Communication of Replicated Services

» Despite all the progress in system design and
engineering, critical services/systems are still exposed
to faults that are hard to detect and prevent

» Amazon S3 outage caused by corrupted messages (bit
flip) in the administration infrastructure (2008)

» Candidate gets extra 4096 votes in a Belgium election
because of cosmic radiation (2003)

» Additionally those critical services/service are exposed
to attacks and intrusions

March 2, 2017 2

//;};‘U Motivation

P OptSCORE: Self-Optimized Communication of Replicated Services

glene » State Machine Replication (SMR) / Active Replication
N S /fff can tolerate such faults to a certain degree

\\ %&;% // » SMR Systems are modeled as finite state automata
- ‘ el and need to agree on a order of the client requests
» But:

» Distributed Consensus causes a huge communication
overhead
» Configuration of SMR protocols is complex

March 2, 2017 3

u OptSCORE

/f((P OptSCORE: Self-Optimized Communication of Replicated Services

OptSCORE: Self-Optimized and Self-Configured

ths C Q RE Communication and Scheduling of Replicated Services

» Joint research project (DFG) between University of
Ulm and University of Passau
» Provide a middleware solution that. ..
» Efficiently offers fault and intrusion tolerance
by withstanding crash and Byzantine faults
using active state machine replication
» Autonomously monitors itself as well the execution
environment
UNIVERSITAT » Dynamically adapts its configuration to approximate
-
/i(ﬁ PASSAU an optimal execution (high throughput, low latency,

reasonable costs)

March 2, 2017 4

//;};‘g Architecture

OptSCORE: Self-Optimized Communication of Replicated Services

OptSCORE Controller

» OptSCORE Controller

Optim. » Each in.st'an.ce nefec.ls to make a
Storage Goal deterministic decision
» Data needs to be distributed and
Analyzer synchronized

> Strategy

» Consist of

[! I !] |

i v i v i v > a set of sensors
I Sensorl |Actuat0r| I Sensorl |Actuat0r| I Sensorl |Actuator| > 23 set Of actuators

Gppilized SysEm > optimization goals

March 2, 2017 5

//;};‘U Architecture

P OptSCORE: Self-Optimized Communication of Replicated Services

coLLecT » OptSCORE Controller
» Implemented as feedback loop
» Livecycle
FEEDBACK » COLLECT - Monitors gathers sensor data
AcT LOOP ANALYZE » ANALYZE - Analyzers reduces data and
detects trends

» DECIDE - Decider checks if configuration
needs to be adapted

DECIDE » ACT - Reconfigurator executes decided

actions

March 2, 2017 6

u Optimizations

/Itu/‘
/r((P OptSCORE: Self-Optimized Communication of Replicated Services

Optimizations
» System Reconfiguration
» Dynamic adaption of timeout, buffer and cache sizes

v

Selection of Algorithms

» Substitution of different consensus algorithms at
runtime

v

Horizontal Scaling
» Adding/Removing additional replicas at runtime

v

Vertical Scaling
» Adding/Removing computational resources at runtime

Protocol Variants

March 2, 2017 7

v

//;};‘U Weighted Voting

P OptSCORE: Self-Optimized Communication of Replicated Services

@8 WHEAT: Weight-Enabled Active Replication (Sousa et al.,
n=4f=1 2015)
quorum size = ["*TM‘\ =3

» Add additional replicas to the system

» Assign weights to all replicas

8 8 8 8 8 » Build quorums based on weighted votes

n=5f=1,
quorum size = ["*TF“‘\ =4

» No advantage?
» Still the same quorum size

I A A
» More replicas produce higher costs

n—5 f—1 » But: More variety in the quorum formation!
quorum size =2f +1=3

March 2, 2017 8

u Weighted Voting

P OptSCORE: Self-Optimized Communication of Replicated Services

//i((

z

Dynamic Weights in Planetary-Scale SMR Systems
» General idea
Add additional replica for additional variance
Monitor the request latencies
Assign higher weights to better connected replicas
Assign leader role to replica that is best connected to
200 the majority of clients
» Advantages
» System will find a latency-optimal weight assignment
» System can adapt to varying environmental conditions
» System respects the client connectivity

v

March 2, 2017 9

u Weighted Voting

P OptSCORE: Self-Optimized Communication of Replicated Services

//i((

Dynamic Weights in Planetary-Scale SMR Systems

» Implementation (in our BFT-SMaRt prototype)
» Measure the server-server and client-server latencies on
». ea.ch .repllca .
@ » Distribute the local measurements to the other replicas

200 » Periodically recalculate the expected request latencies
for all possible weight and leader role assignments

» Reconfigure the system if the reconfiguration cost can
be compensated by the expected latency reduction

March 2, 2017 10

u Weighted Voting

P OptSCORE: Self-Optimized Communication of Replicated Services

//i((

Dynamic Weights in Planetary-Scale SMR Systems
» Challenges

» Data measurement and synchronization
» What to do with data that is not send because
.M processes fail or are too slow?
> How to reach a deterministic decision?
200 > Attacks

> How to deal with tampered data from malicious
node?

> How to prevent that the leader role is constantly
assigned to a fast but malicious replica?

u Weighted Voting

P OptSCORE: Self-Optimized Communication of Replicated Services

//i((

b " Tampered Data (BFT)
o /‘” » Request latencies are measured in both directions

‘a’
20 aye
.l » Utilize request symmetry in a pessimistic way

» Use the larger delay for calculations
» Replica cannot make itself faster

March 2, 2017 12

u Weighted Voting

P OptSCORE: Self-Optimized Communication of Replicated Services

//i((

Malicious leader (BFT)

» Fast, but malicious replica gets the leader

» 2 » Leader does not propose any requests
.W » Reelection, reconfiguration, reelection, ...
» Blacklist prevents reconfiguration decisions

» Each reelection doubles the number of blocked
reconfiguration rounds

March 2, 2017 13

u Weighted Voting

P OptSCORE: Self-Optimized Communication of Replicated Services

//i(‘

Performance Evaluation (average sample of 1000 client requests after some warm up)

Accept (ns) I
Write (us) _
Propose (ns) .
Post-Consensus (ns) '
Pre-Consensus (Us)
Consensus (us) _
Server processing (Us) _

200,000.0 600,000.0 1,000,000.0
0.0 400,000.0 800,000.0

March 2, 2017 14

B WHEAT
= DynamicWHEAT

u Weighted Voting

P OptSCORE: Self-Optimized Communication of Replicated Services

//i((

Performance Evaluation (average sample of 1000 client requests after some warm up)

| WHEAT DynamicWHEAT Overhead

Total request 844,796 us 851,999 us 0.85%
Server processing | 401,660.1 us 403,643.2 us 0.49%
Consensus 401,598.1 us 403,639.7 us 0.51%
Pre-Consensus 0.0 us 0.0 us 0.00%
Post-Consensus 108.7 us 151.5 us 39.37%
Propose 62.0 us 59.0 us -4.84%
Write 381,411.8 pus 383,256.2 us 0.48%
Accept 20,123.0 us 20,2233 us 0.50%

March 2, 2017 15

u Summary

/EU/‘
/f((P OptSCORE: Self-Optimized Communication of Replicated Services

» Optimization causes just a reasonable overhead
» The solution offers some performance potential

» But: This potential can only be activated in dynamic
environments

March 2, 2017

	Motivation
	OptSCORE
	Architecture
	Optimizations
	Weighted Voting

