
Stefan Nothaas, Kevin Beineke, Michael Schöttner
Department of Computer Science, Heinrich-Heine-University Düsseldorf, Germany

March 3rd 2017, Reisensburg

DXGraph: Large-scale Graph
Processing Based on a Distributed

In-memory Key Value Store

DXRAM - Architecture

2

• DXRAM Core
• Engine
• Components
• Services (API)

• Custom applications

DXRAM Core

Algorithms Data structuresLoading Generating Converting

JobService MasterSlaveService WorkerService

Core Services
Chunk Migration NameserviceNetwork RecoverySynchronization

Engine
Configuration Bootstrapping Component InterfaceService Interface

Core Components
Backup Chunk LookupMemory Nameservice NetworkBoot

DXRAM - Node Types

3

• Superpeer Overlay
• Fast node lookup with custom Chord-like overlay
• Superpeers do not store chunks but all global

meta-data (modified B-Tree)
• Meta-data replicated on successors
• 5 to 10% of all nodes are superpeers
• Every superpeer knows every other superpeer

34

55
20

0
1160

54

51

48
37

29
22

Manages Peers in
the interval [35,54]

DXRAM - Node Types

4

• Peers store chunks
• Every peer is assigned to one superpeer
• Key: 64 bit globally unique sequential chunk ID

(CID)
• Value: Byte buffer

34

55
20

0
1160

54

51

48
37

29
22

Manages Peers in
the interval [35,54]

DXRAM - Memory Management

5

• Custom allocator designed for many small chunks
• Operations: Create, get, put, remove
• Optimized for high concurrency

• get (16 byte): 228 million ops/sec ⇒ 3.4 GB/sec
• get & put (16 byte): 116 million ops/sec ⇒ 2.5 GB/sec

DXRAM - Address Translation

6

Paging like address translation
• Chunk location lookup in O(1)
• Tables created on demand

• Average metadata overhead ~5% (avg. payload size: 64 bytes)
• Example: 64 GB for key-value store ⇒ ~1 billion chunks per node

Node
Dir.

LID
Level
3

12121216 12

LID
Level
2

LID	
Level
1

LID
Level
0

NID

Base	Address

+Virtual	Address

CID:

LID	
Fragm.	1

LID	
Fragm.	2

LID	
Fragm.	3

LID	
Fragm.	4

DXRAM - Logging

7

Storing replicas on remote peers, challenges
• Replication in RAM too expensive
• Update in-place on SSD

• Writing small objects randomly is very slow
• Locations of all objects must be known

• Append data to a log
• Best SSD utilization
• Low RAM consumption
• Requires reorganization

and version control

Backups

Network Thread Writer Thread

RAM SSD

Primary Log
Time-Out /
Threshold

Buffer Write

Network RAM

DXRAM - Logging

8

• Reorganization is necessary to free space for further updates
• Novel version control

• Epoch based (combining caching and writing to SSD)
• 2-level logging

• Low memory footprint and high throughput
• Fast parallel recovery ⇒ < 1 sec
• Yahoo! Cloud Serving Benchmark

• Comparing DXRAM to Aerospike and Redis

DXRAM - Foundation for Graph Computation

9

• DXRAM provides
• Low latency
• Scalability
• Efficient handling of small objects

⇒ Foundation for graph processing

• What else do we need for graph processing?
• Utilize CPU resources on storage nodes
• Move computations to data ⇒ locality

DXCompute

10

• Extends DXRAM Core
• Services to run computations on peers
• Benefit from locally stored chunks
• JobService

• Deploy light weight jobs to single nodes
• Scheduling by work stealing

• MasterSlaveService
• Aggregate nodes to compute groups
• Deploy compute tasks to group

DXRAM Core

Algorithms Data structuresLoading Generating Converting

DXCompute
JobService MasterSlaveService WorkerService

Core Services
Chunk Migration NameserviceNetwork RecoverySynchronization

Engine
Configuration Bootstrapping Component InterfaceService Interface

Core Components
Backup Chunk LookupMemory Nameservice NetworkBoot

DXCompute - MasterSlaveService

11

• Peers form a compute group
• Master: one peer as coordinator
• Slaves: further peers as distributed workers
• Tasks are submitted to compute groups
• Groups can grow
• Access to other nodes outside group (storage)
• Task context on execution

• Compute group ID
• Own slave ID
• List of node IDs of every other slave
• Total number of slaves

34

55
20

0
1160

54

51

48
37

29
22

DXGraph

12

• DXGraph extends DXCompute
• Uses JobService or MasterSlaveService
• Algorithms for graph processing
• Graph data loading
• Natural representation of graph data as

objects: Vertex, Edge, Attribute

DXGraph - Breadth-First-Search

13

• Implementation as specified by the Graph500 benchmark
• Stress test for system: Highly random access
• Standard top-down combined with bottom-up approach (reducing number of

visited vertices)
• Compute task: Implements BFS

• Distributed and multithreaded implementation
• Delegates processing of non local vertices to owner node
• Lock-free bitmap based frontier data structure
• Low overhead synchronization between BFS levels

DXGraph's BFS on Hilbert

14

• HPC system of our university:
• BULL: Cluster architecture, 112 nodes with 24 cores and 128 GB RAM each

• Running DXGraph's BFS implementation on BULL cluster
• Goals: Scalability, Low memory overhead ⇒ storing many small objects

• Graph sizes tested: Scale 28 (64 GB) to 32 (1 TB)
• Random but equally distributed to 8 to 104 compute nodes

DXGraph's BFS on Hilbert - Results

15

Conclusions & Outlook

16

• Conclusions
• DXRAM: Distributed in-memory key-value store for many small objects

• ~ 5% metadata overhead, get (16 byte): 228 million ops/sec ⇒ 3.4 GB/sec
• Outstanding logging performance, especially with objects <= 100 bytes

• DXGraph: Fast and scalable BFS implementation on 104 nodes
• Graph: 1 TB, ~4.3 billion vertices, ~137 billion edges
• Double the nodes ⟹ Half the execution time
• Up to 1 billion traversed edges per second

• Outlook
• InfiniBand

