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■ Big data operations bring general purpose computers to their limits

 Handling data streams is often parallelizable and could be pipelined

 Simulating hardware structures (e.g. for machine learning) 
is inefficient

■ Would benefit from specialized hardware

■ Custom chip manufacturing needs high numbers to be profitable

■ Field Programmable Gate Array: programmable hardware circuit

► Outsource computation-intense operations to a FPGA

As general purpose computing power stagnates, 
FPGA acceleration can speed up big data tasks
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■ Acccelerator can coherenctly access host memory

► No redudant copies or memory access overhead

■ Accelerated Function Units (AFUs) are outsourced functionalities

■ Communication to FPGA via libcxl and shared memory

IBM CAPI is a accelerator interface for the 
communication between host and FPGA
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■ Creating hardware specifications in Verilog or VHDL is quite different from 
imperative programming

– VHDL and Verilog languages

– Development workflow: Make design changes, synthesize, simulate, 
generate bitstream, test on device

– Blocks as units of functional composition

■ Detailed knowledge of the underlying hardware architecture is required

– Communication has to be controlled manually

– Timing constraints

– Manage asynchronous command execution

■ Each application needs to establish a communication protocol between 
host and AFU

Having to write hardware code is a barrier for 
software engineers
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■ We built on the example presented in Kenneth Wilke’s Blog 
(http://suchprogramming.com)

■ Steps

1. Define job structure for AFU in consumer code

2. Initialize project with a root module (top.v) and CAPI 
interface declarations (capi.sv, afu.sv)

3. Implement modules to encapsulate MMIO communication 
and Job lifecycle

4. Implement work element as a state machine
(Idle, Read, Sum, Write, WriteWait, IdleWait)

5. Implement AFU consumer using libcxl

Implementing a simple Adder-AFU for CAPI with 
SystemVerilog



6

Implementing a simple Adder-AFU for CAPI with 
SystemVerilog
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Demo



Build features

Vivado High 
Level Synthesis

Different FPGA 
cards

PSL checkpoint 
file

…

Framework 
features

Simplified API

Unified memory 
access

CAPI SNAP provides a simple API and a unified build 
process with support for High Level Synthesis
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■ Vivado Suite is GUI focused, automating it 
requires some learning

■ A lot of different components are needed for  
creating or simulating a CAPI FPGA image

■ CAPI Developers need to think of job and 
memory management

► SNAP for easy building and higher level 
development

■ Provides different ready-to-go examples

– Breadth-first search, hashjoin, memcopy, …

■ Simulation based on CAPI



CAPI SNAP provides a simple API and a unified build 
process with support for High Level Synthesis
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Source Vivado settings file,  export Vivado license file location



■ Blowfish: symmetric block cipher with 64 bit blocks and 
32 to 448 bit keys

■ Free, easy to implement, relatively fast

■ Blowfish-AFU

□ SET_KEY: use byte_count bytes from input buffer to 
initialize the key for subsequent en-/decrypt operations

□ ENCRYPT: encrypt byte count plaintext bytes in input 
buffer and store the result in output buffer

□ DECRYPT: decrypt byte count ciphertext bytes in input 
buffer and store the result in output buffer

We implemented the symmetric block cipher Blowfish
in hardware
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We implemented the symmetric block cipher Blowfish 
in hardware
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static bf_P_t g_P;
static bf_S_t g_S;
static snapu32_t process_action(snap_membus_t * din_gmem, snap_membus_t * dout_gmem, action_reg * action_reg)
{

snapu64_t inAddr, outAddr;
snapu32_t byteCount, mode, retc;
// initialize arguments from action_reg ...
switch (mode) {
case MODE_SET_KEY: retc = action_setkey(din_gmem, inAddr, byteCount); break;
case MODE_ENCRYPT: retc = action_endecrypt(din_gmem, inAddr, dout_gmem, outAddr, byteCount, 0); break;
case MODE_DECRYPT: retc = action_endecrypt(din_gmem, inAddr, dout_gmem, outAddr, byteCount, 1);
}
return retc;

}

translates to



Performance optimization depends on a detailed 
analysis of different aspects of the AFU design
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■ Relevant parts of the AFU design 
must be analyzed to locate
bottlenecks

■ Blowfish-AFU: Throughput oriented
scenario, compare memory and
encryption bandwidth

►Memory interface suports up to 16 
times the encrypt throughput

►Multiple instances of encrypt
hardware can acheive overall
speedup



Performance optimization requires a deeper 
understanding of the underlying hardware
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static bf_halfBlock_t bf_f(bf_halfBlock_t h)
{

bf_SiE_t a = (bf_SiE_t)(h >> 24),
b = (bf_SiE_t)(h >> 16),
c = (bf_SiE_t)(h >> 8),
d = (bf_SiE_t) h;

return ((g_S[0][a] + g_S[1][b]) ^ g_S[2][c]) + g_S[3][d];
}

■ To support multiple parallel encrypt, resource
conflicts must be eliminated

■ Block encrypt uses the bf_f() function: four
sequential argument dependent read operations

■ Multiple instances of bf_f() require independent
read ports to the S-Array; implementation
provides Dual-Port-RAM

►Solution: More Read-Only Ports can be acheived
by providing multiple Copies of the S-Array



Performance optimization requires a deeper 
understanding of the underlying hardware
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#pragma HLS ARRAY_PARTITION variable=g_S complete dim=1

static void bf_fLine(bf_halfBlock_t res[BF_BPL], bf_halfBlock_t h[BF_BPL])
{

for (bf_uiBpL_t iBlock = 0; iBlock < BF_BPL; ++iBlock)
{

#pragma HLS UNROLL factor=8 //==BF_BPL
bf_SiE_t a = (bf_SiE_t)(h[iBlock] >> 24),

b = (bf_SiE_t)(h[iBlock] >> 16),
c = (bf_SiE_t)(h[iBlock] >> 8),
d = (bf_SiE_t) h[iBlock];

res[iBlock] = ((g_S[iBlock/2][0][a] + g_S[iBlock/2][1][b]) ^
g_S[iBlock/2][2][c]) + g_S[iBlock/2][3][d];

}
}



Thank you! Questions?
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