Hasso
| Plattner
Institut

IT Systems Engineering | Universitat Potsdam

T

-

Hardware Acceleration on IBM Power
First Steps with CAPI SNAP

Balthasar Martin, Robert Schmid; Lukas Wenzel

Heterogeneous Computing Master. Project -

27 September, 2017

As general purpose computing power stagnates,
FPGA acceleration can speed up big data tasks

Hasso
Plattner
Institut

m Big data operations bring general purpose computers to their limits

» Handling data streams is often parallelizable and could be pipelined

Logic Blocks Programmable

= Simulating hardware structures (e.g. for machine learning) / Interco\:mea
is inefficient [] IS
Tz
I QIS
m Would benefit from specialized hardware HQHQL __ E"Q"Q"
_ _ _ _ IS I
m Custom chip manufacturing needs high numbers to be profitable I I

IDICICy a0
ane’e § RR
RAI\/I/ALU//.r /

Blocks 10 Blocks

m Field Programmable Gate Array: programmable hardware circuit

» Outsource computation-intense operations to a FPGA

IBM CAPI is a accelerator interface for the
communication between host and FPGA

m Acccelerator can coherenctly access host memory

» No redudant copies or memory access overhead

Host

CAP Core
Proxy O..n

Coherent Cache libexl
Hierarchy IR

User Application

Kernel Driver

Main Memory

m Accelerated Function Units (AFUs) are outsourced functionalities

m Communication to FPGA via libcxl and shared memory

Hasso
Plattner
Institut

Having to write hardware code Is a barrier for
software engineers

m Creating hardware specifications in Verilog or VHDL is quite different from
Imperative programming

— VHDL and Verilog languages

— Development workflow: Make design changes, synthesize, simulate,
generate bitstream, test on device

— Blocks as units of functional composition
m Detailed knowledge of the underlying hardware architecture is required
— Communication has to be controlled manually
— Timing constraints
— Manage asynchronous command execution

m Each application needs to establish a communication protocol between
host and AFU

Hasso
Platther
Institut

..ll

Implementing a simple Adder-AFU for CAPI with

SystemVerilog

Hasso
Platther
Institut

m We built on the example presented in Kenneth Wilke’s Blog
(http://suchprogramming.com)

m Steps

1. Define job structure for AFU in consumer code

2. Initialize project with a root module (top.v) and CAPI
interface declarations (capi.sv, afu.sv)

3. Implement modules to encapsulate MMIO communication
and Job lifecycle

4. Implement work element as a state machine
(Idle, Read, Sum, Write, WriteWait, IdleWait)

5. Implement AFU consumer using libcxl|

{

uint32 t done;

} sum request;

sum_request *create sum reqi

sum_request *new = aligl

new->done = 0;
new-=>a = 2
new-=b

Implementing a simple Adder-AFU for CAPI with
SystemVerilog

top.sv

Hasso
Plattner
Institut

.||I

job_interface.sv
Job Interface Job Logic

Command Interface

Response Interface

Buffer Interface

finished

mmio_interface.sv

AFU-
MMIO Interface Descriptor
Logic

adder_workelement.sv

running ready

Irunning

read(reqg, jea) —

ready —

finished write (Jea, reg)

reg.sum =

reg.a + reg.b

Hasso
| Plattner
balthasar2@plauth-ws: S make Institut
rm -rf xsim.dir .Xil
rm -f *,jou *.log *.pb libdpi.so
In -s fhome/balthasar2/repos/pslse/ffafu driver/src/libdpi.so .
fopt/Xilinx/Vivado/2016.4/bin/xvlog -sourcelibdir . -sourcelibext .v -sourcelibext
sv -sv top.v
INFO: [VRFC 18-2263] Analyzing SystemVerilog file " /home/balthasar2/repos/afu-hello-
worlafafu/top.v" into library work
INFO: [VRFC 10-311] analyzing module top

CAPI SNAP provides a simple APl and a unified build Hasso
process with support for High Level Synthesis mﬂf?ﬁ{
: Framework ===
Build feat
HIIE TEALHTes features m Vivado Suite is GUI focused, automating it
requires some learning
m A lot of different components are needed for
| Vivado High simplified API | St eomp _
[Level Synthesis creating or simulating a CAPI FPGA image
m CAPI Developers need to think of job and
| Different FPGA Unified memory memory management
cards access

» SNAP for easy building and higher level
development

. PSL checkpoint

file m Provides different ready-to-go examples

— Breadth-first search, hashjoin, memcopy, ...

m Simulation based on CAPI

CAPI SNAP provides a simple APl and a unified build
process with support for High Level Synthesis

Source Vivado settings file, export Vivado license file location

balthasar2@plauth-ws:~/repos/snap/hardware$ source snap settings

FPGACARD
FPGACHIP
PSL_DCP
SNAP PATH variables
SNAP _ROOT
ACTION ROOT
SNAP simulation var
PSLSE ROOT
SIMULATOR

NUM_OF_ACTIONS
SDRAM_USED
NVME_USED
ILA_DEBUG

=

iables
is set
is set

is set
is set
is set
is set

: Jopt/Xilinx/Vivado/2016.4/bin/vivado
: Vivado v2016.4 (64-bit)

n FGT”
"xcku@60-ffvall56-2-e"
"/home/balthasar2/cards/FGT/portal 20170413/b _route_design.dcp"

"/home/balthasar2/repos/snap"
"/home/balthasar2/repos/snap/hardware/action _examples/hdl _example"

"FALSE"
"FALSE"
"FALSE"

Hasso
Plattner
Institut

<||I

We implemented the symmetric block cipher Blowfish

Hasso
in hardware LatHEr
m Blowfish: symmetric block cipher with 64 bit blocks and =: :_:_:

32 to 448 bit keys ==

m Free, easy to implement, relatively fast M
H I:I [l E E“ |: FE: WD
MODE DECRYP
e CACHELINE BYTES
CACHELINE_BYTES 128

o SET_KEY: use byte count bytes from input buffer to
initialize the key for subsequent en-/decrypt operations

o ENCRYPT: encrypt byte count plaintext bytes in input

buffer and store the result in output buffer I ST SaTTiE T]
st f snap _addr 1nput data;
o DECRYPT: decrypt byte count ciphertext bytes in input SUULCC SHET IR DI BeriE

32 T mode;
buffer and store the result in output buffer 32

t data length;
OWTLSN] oD 1: i

10

balthasar2@plauth-ws:

Checking Xilinx Vivado:
Path to vivado is set to

Vivado version is set to:

CARD variables
Setting FPGACARD

S ./snap_settings

: fopt/Xilinx/Vivado/2016.4/bin/vivado
Vivado v2016.4 (64-bit)

Hasso
| Plattner
Institut

We implemented the symmetric block cipher Blowfish

Hasso
: Plattner
. A
of P_t e P; Y
bf_S_t g_S; = Em mm =
. . . o I N W .
snapu32_t process_action(snap_membus_t * din_gmem, snap_membus_t * dout_gmem, action_reg * action_reg) — 7 —

snapu64_t inAddr, outAddr;
snapu32_t byteCount, mode, retc;

(mode) {
action_setkey(din_gmem, inAddr, byteCount); 5
action_endecrypt(din_gmem, inAddr, dout_gmem, outAddr, byteCount, 0);
action_endecrypt(din_gmem, inAddr, dout_gmem, outAddr, byteCount, 1);

En/Decrypt
Datapath
Keylnit
Datapath

Control Statemachine 12

translates to

S&P
Arrays

Performance optimization depends on a detailed

analysis of different aspects

of the AFU design

m Relevant parts of the AFU design
must be analyzed to locate
bottlenecks

m Blowfish-AFU: Throughput oriented
scenario, compare memory and
encryption bandwidth

» Memory interface suports up to 16
times the encrypt throughput

» Multiple instances of encrypt
hardware can acheive overall
speedup

400.0
350.0
300.0
250.0
200.0
150.0
100.0

50.0

0.0
W g g gt S S S

NI

—— Memory (MiB/sec) ==#= Encrypt (MiB/sec)

En/Decrypt
Datapath

Keylnit

Datapath

Control Statemachine 13

Hasso
| Plattner
Institut

..ll

Performance optimization requires a deeper
understanding of the underlying hardware

Hasso
Platther
Institut

m To support multiple parallel encrypt, resource
conflicts must be eliminated

m Block encrypt uses the bf_f() function: four
sequential argument dependent read operations

m Multiple instances of bf_f() require independent
read ports to the S-Array; implementation
provides Dual-Port-RAM

» Solution: More Read-Only Ports can be acheived
by providing multiple Copies of the S-Array

bf_halfBlock_t bf f(bf_halfBlock t h)

bf SiE t a

(bf_SiE_t)(h >>),

(bf_SiE_t)(h >>),

(bf_SiE_t)(h >> 8),

(bf_SiE_t) h;

((g_s[e][a] + g_S[1][b]) " g_S[2][c]) + g_S[3][d];

14

Performance optimization requires a deeper
understanding of the underlying hardware

Hasso
Plattner
Institut

t5] Module Hierarchy

T
BRAM | DSP | FF LT Latency|Interval | Pipeline type
= @ his_action 78 0 20868 47824 undef ! none
¥ @ process_action 48 0] 16887: 41814 undef :none
= @ action_endecrypt 30 0 12281:17069: 1~225% 1 ~ 22 none
= o bf_encryptline 0 0 3993 (7071 {129 129 none
O)
b e bf decryptlLine 0 0 3992 (7074 121 121 none
e bf splitLine 0 0 0 0 0 0 none
e bf joinLine 0 0 0 0 0 0 none
b @ action_setkey 2 0 4008 ;24359 undef :none
= Resource(blowfish) &3
Current Module : hls_action > process_action > action_endecrypt >
Resource\Control Step Cco Cl c2 15l c4 =5
1-49 ®#I/0 Ports
50 EIMemory Ports
51 g_S_V_B(pa) read read read read
52 g_S_W_4(pl) read read read read
53 g_S_V_1(p0) read read read read
54 g_S_V_3(pa) read read read read
55 g_S_V_2(pl) read read read read
56 g_S_W_3(pl) read read read read
57 g_S_V_7(pl) read read read read
58 g_S_V_1(pl) read read read read
59 g_S_V_5(pl) read read read read
60 g_S_W_2(p0o) read read read read
61 g_S_V_4(po) read read read read
62 g_S_V_B(pl) read read read read
63 g_S_V_7(p0) read read read read
64 g_S_W_5(p0) read read read read
65 g_S_v_8(pl) read read read read
66 g_S_V_8(po) read read read read

67-... FExpressions

Performance |Resource

g S

bf fLine(bf_halfBlock_t res|

(bf_uiBpL_t iBlock = @; iBlock <

bf SiE t a

b

C

d
res[iBlock] = ((g_S[iBlock/2][@][a] + g S[iBlock/2][1][b]) ~
g S[iBlock/2][2][c]) + g S[iBlock/2][3][d];

8

1, bf_halfBlock t h[

; ++iBlock)

(bf_SiE_t)(h[iBlock] >> 24),
(bf_SiE_t)(h[iBlock] >> 16),
(bf _SiE_t)(h[iBlock] >> 8),

(bf_SiE_t) h[iBlock];

.||II

Hasso
| Plattner
Institut

IT Systems Engineering | Universitat Potsdam

T

Thank you! Questions?

\

Balthasar Martin, Robert Schmid; Lukas Wenzel

Heterogeneous Computing Masterprojekt >

27 September, 2017

	Hardware Acceleration on IBM Power�First Steps with CAPI SNAP
	As general purpose computing power stagnates, FPGA acceleration can speed up big data tasks
	IBM CAPI is a accelerator interface for the communication between host and FPGA
	Having to write hardware code is a barrier for software engineers
	Implementing a simple Adder-AFU for CAPI with SystemVerilog
	Implementing a simple Adder-AFU for CAPI with SystemVerilog
	Demo
	CAPI SNAP provides a simple API and a unified build process with support for High Level Synthesis
	CAPI SNAP provides a simple API and a unified build process with support for High Level Synthesis
	We implemented the symmetric block cipher Blowfish in hardware
	Demo
	We implemented the symmetric block cipher Blowfish in hardware
	Performance optimization depends on a detailed analysis of different aspects of the AFU design
	Performance optimization requires a deeper understanding of the underlying hardware
	Performance optimization requires a deeper understanding of the underlying hardware
	Thank you! Questions?

