
Hardware Acceleration on IBM Power
First Steps with CAPI SNAP

Balthasar Martin, Robert Schmid, Lukas Wenzel

Heterogeneous Computing Master Project

27 September, 2017

■ Big data operations bring general purpose computers to their limits

 Handling data streams is often parallelizable and could be pipelined

 Simulating hardware structures (e.g. for machine learning)
is inefficient

■ Would benefit from specialized hardware

■ Custom chip manufacturing needs high numbers to be profitable

■ Field Programmable Gate Array: programmable hardware circuit

► Outsource computation-intense operations to a FPGA

As general purpose computing power stagnates,
FPGA acceleration can speed up big data tasks

2

Programmable
Interconnect

Logic Blocks

IO Blocks
RAM/ALU/...

Blocks

■ Acccelerator can coherenctly access host memory

► No redudant copies or memory access overhead

■ Accelerated Function Units (AFUs) are outsourced functionalities

■ Communication to FPGA via libcxl and shared memory

IBM CAPI is a accelerator interface for the
communication between host and FPGA

3

FPGA

AFU PSL

Host

PCIe

libcxl

Kernel Driver

User Application

Main Memory

CAP
Proxy

Core
0 … n

Coherent Cache
Hierarchy

■ Creating hardware specifications in Verilog or VHDL is quite different from
imperative programming

– VHDL and Verilog languages

– Development workflow: Make design changes, synthesize, simulate,
generate bitstream, test on device

– Blocks as units of functional composition

■ Detailed knowledge of the underlying hardware architecture is required

– Communication has to be controlled manually

– Timing constraints

– Manage asynchronous command execution

■ Each application needs to establish a communication protocol between
host and AFU

Having to write hardware code is a barrier for
software engineers

4

5

■ We built on the example presented in Kenneth Wilke’s Blog
(http://suchprogramming.com)

■ Steps

1. Define job structure for AFU in consumer code

2. Initialize project with a root module (top.v) and CAPI
interface declarations (capi.sv, afu.sv)

3. Implement modules to encapsulate MMIO communication
and Job lifecycle

4. Implement work element as a state machine
(Idle, Read, Sum, Write, WriteWait, IdleWait)

5. Implement AFU consumer using libcxl

Implementing a simple Adder-AFU for CAPI with
SystemVerilog

6

Implementing a simple Adder-AFU for CAPI with
SystemVerilog

top.sv

Job LogicJob Interface

job_interface.sv

AFU-
Descriptor

Logic

mmio_interface.sv

MMIO Interface

adder_workelement.sv

Command Interface

Buffer Interface

Response Interface

reset

running

finished

IDLE
READ
WAIT

SUM

WRITE
IDLE
WAIT

WRITE
WAIT

jea

ready

finished

—

write (jea, reg)

—

reg.sum =

reg.a + reg.b
!running

—

running

read(reg, jea)

ready

—

Demo

Build features

Vivado High
Level Synthesis

Different FPGA
cards

PSL checkpoint
file

…

Framework
features

Simplified API

Unified memory
access

CAPI SNAP provides a simple API and a unified build
process with support for High Level Synthesis

8

■ Vivado Suite is GUI focused, automating it
requires some learning

■ A lot of different components are needed for
creating or simulating a CAPI FPGA image

■ CAPI Developers need to think of job and
memory management

► SNAP for easy building and higher level
development

■ Provides different ready-to-go examples

– Breadth-first search, hashjoin, memcopy, …

■ Simulation based on CAPI

CAPI SNAP provides a simple API and a unified build
process with support for High Level Synthesis

9

Source Vivado settings file, export Vivado license file location

■ Blowfish: symmetric block cipher with 64 bit blocks and
32 to 448 bit keys

■ Free, easy to implement, relatively fast

■ Blowfish-AFU

□ SET_KEY: use byte_count bytes from input buffer to
initialize the key for subsequent en-/decrypt operations

□ ENCRYPT: encrypt byte count plaintext bytes in input
buffer and store the result in output buffer

□ DECRYPT: decrypt byte count ciphertext bytes in input
buffer and store the result in output buffer

We implemented the symmetric block cipher Blowfish
in hardware

10

Demo

We implemented the symmetric block cipher Blowfish
in hardware

12

PSL

En/Decrypt
Datapath

KeyInit
Datapath

S & P
Arrays

Control Statemachine

static bf_P_t g_P;
static bf_S_t g_S;
static snapu32_t process_action(snap_membus_t * din_gmem, snap_membus_t * dout_gmem, action_reg * action_reg)
{

snapu64_t inAddr, outAddr;
snapu32_t byteCount, mode, retc;
// initialize arguments from action_reg ...
switch (mode) {
case MODE_SET_KEY: retc = action_setkey(din_gmem, inAddr, byteCount); break;
case MODE_ENCRYPT: retc = action_endecrypt(din_gmem, inAddr, dout_gmem, outAddr, byteCount, 0); break;
case MODE_DECRYPT: retc = action_endecrypt(din_gmem, inAddr, dout_gmem, outAddr, byteCount, 1);
}
return retc;

}

translates to

Performance optimization depends on a detailed
analysis of different aspects of the AFU design

13

PSL

En/Decrypt
Datapath

KeyInit
Datapath

S & P
Arrays

Control Statemachine

■ Relevant parts of the AFU design
must be analyzed to locate
bottlenecks

■ Blowfish-AFU: Throughput oriented
scenario, compare memory and
encryption bandwidth

►Memory interface suports up to 16
times the encrypt throughput

►Multiple instances of encrypt
hardware can acheive overall
speedup

Performance optimization requires a deeper
understanding of the underlying hardware

14

static bf_halfBlock_t bf_f(bf_halfBlock_t h)
{

bf_SiE_t a = (bf_SiE_t)(h >> 24),
b = (bf_SiE_t)(h >> 16),
c = (bf_SiE_t)(h >> 8),
d = (bf_SiE_t) h;

return ((g_S[0][a] + g_S[1][b]) ^ g_S[2][c]) + g_S[3][d];
}

■ To support multiple parallel encrypt, resource
conflicts must be eliminated

■ Block encrypt uses the bf_f() function: four
sequential argument dependent read operations

■ Multiple instances of bf_f() require independent
read ports to the S-Array; implementation
provides Dual-Port-RAM

►Solution: More Read-Only Ports can be acheived
by providing multiple Copies of the S-Array

Performance optimization requires a deeper
understanding of the underlying hardware

15

#pragma HLS ARRAY_PARTITION variable=g_S complete dim=1

static void bf_fLine(bf_halfBlock_t res[BF_BPL], bf_halfBlock_t h[BF_BPL])
{

for (bf_uiBpL_t iBlock = 0; iBlock < BF_BPL; ++iBlock)
{

#pragma HLS UNROLL factor=8 //==BF_BPL
bf_SiE_t a = (bf_SiE_t)(h[iBlock] >> 24),

b = (bf_SiE_t)(h[iBlock] >> 16),
c = (bf_SiE_t)(h[iBlock] >> 8),
d = (bf_SiE_t) h[iBlock];

res[iBlock] = ((g_S[iBlock/2][0][a] + g_S[iBlock/2][1][b]) ^
g_S[iBlock/2][2][c]) + g_S[iBlock/2][3][d];

}
}

Thank you! Questions?

Balthasar Martin, Robert Schmid, Lukas Wenzel

Heterogeneous Computing Masterprojekt

27 September, 2017

	Hardware Acceleration on IBM Power�First Steps with CAPI SNAP
	As general purpose computing power stagnates, FPGA acceleration can speed up big data tasks
	IBM CAPI is a accelerator interface for the communication between host and FPGA
	Having to write hardware code is a barrier for software engineers
	Implementing a simple Adder-AFU for CAPI with SystemVerilog
	Implementing a simple Adder-AFU for CAPI with SystemVerilog
	Demo
	CAPI SNAP provides a simple API and a unified build process with support for High Level Synthesis
	CAPI SNAP provides a simple API and a unified build process with support for High Level Synthesis
	We implemented the symmetric block cipher Blowfish in hardware
	Demo
	We implemented the symmetric block cipher Blowfish in hardware
	Performance optimization depends on a detailed analysis of different aspects of the AFU design
	Performance optimization requires a deeper understanding of the underlying hardware
	Performance optimization requires a deeper understanding of the underlying hardware
	Thank you! Questions?

