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As general purpose computing power stagnates,
FPGA acceleration can speed up big data tasks
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m Big data operations bring general purpose computers to their limits

» Handling data streams is often parallelizable and could be pipelined
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m Field Programmable Gate Array: programmable hardware circuit

» Outsource computation-intense operations to a FPGA



IBM CAPI is a accelerator interface for the
communication between host and FPGA

m Acccelerator can coherenctly access host memory

» No redudant copies or memory access overhead

Host
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Proxy O..n

Coherent Cache libexl
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User Application
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Main Memory

m Accelerated Function Units (AFUs) are outsourced functionalities

m Communication to FPGA via libcxl and shared memory
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Having to write hardware code Is a barrier for
software engineers

m Creating hardware specifications in Verilog or VHDL is quite different from
Imperative programming

— VHDL and Verilog languages

— Development workflow: Make design changes, synthesize, simulate,
generate bitstream, test on device

— Blocks as units of functional composition
m Detailed knowledge of the underlying hardware architecture is required
— Communication has to be controlled manually
— Timing constraints
— Manage asynchronous command execution

m Each application needs to establish a communication protocol between
host and AFU
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Implementing a simple Adder-AFU for CAPI with

SystemVerilog
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m We built on the example presented in Kenneth Wilke’s Blog
(http://suchprogramming.com)

m Steps

1. Define job structure for AFU in consumer code

2. Initialize project with a root module (top.v) and CAPI
interface declarations (capi.sv, afu.sv)

3. Implement modules to encapsulate MMIO communication
and Job lifecycle

4. Implement work element as a state machine
(Idle, Read, Sum, Write, WriteWait, IdleWait)

5. Implement AFU consumer using libcxl|

{

uint32 t done;

} sum request;

sum_request *create sum reqi

sum_request *new = aligl

new->done = 0;
new-=>a = 2
new-=b



Implementing a simple Adder-AFU for CAPI with
SystemVerilog

top.sv
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job_interface.sv
Job Interface Job Logic

Command Interface

Response Interface

Buffer Interface

finished

mmio_interface.sv

AFU-
MMIO Interface Descriptor
Logic

adder_workelement.sv

running ready

Irunning

read(reqg, jea) —

ready —

finished write (Jea, reg)

reg.sum =

reg.a + reg.b




Hasso
| Plattner
balthasar2@plauth-ws: S make Institut
rm -rf xsim.dir .Xil
rm -f *,jou *.log *.pb libdpi.so
In -s fhome/balthasar2/repos/pslse/ffafu driver/src/libdpi.so .
fopt/Xilinx/Vivado/2016.4/bin/xvlog -sourcelibdir . -sourcelibext .v -sourcelibext
sv -sv top.v
INFO: [VRFC 18-2263] Analyzing SystemVerilog file " /home/balthasar2/repos/afu-hello-
worlafafu/top.v" into library work
INFO: [VRFC 10-311] analyzing module top




CAPI SNAP provides a simple APl and a unified build Hasso
process with support for High Level Synthesis mﬂf?ﬁ{
: Framework ===
Build feat
HIIE TEALHTes features m Vivado Suite is GUI focused, automating it
requires some learning
m A lot of different components are needed for
| Vivado High simplified API | St eomp _
[ Level Synthesis creating or simulating a CAPI FPGA image
m CAPI Developers need to think of job and
| Different FPGA Unified memory memory management
cards access

» SNAP for easy building and higher level
development

. PSL checkpoint

file m Provides different ready-to-go examples

— Breadth-first search, hashjoin, memcopy, ...

m Simulation based on CAPI



CAPI SNAP provides a simple APl and a unified build
process with support for High Level Synthesis

Source Vivado settings file, export Vivado license file location

balthasar2@plauth-ws:~/repos/snap/hardware$ source snap settings

FPGACARD
FPGACHIP
PSL_DCP
SNAP PATH variables
SNAP _ROOT
ACTION ROOT
SNAP simulation var
PSLSE ROOT
SIMULATOR

NUM_OF_ACTIONS
SDRAM_USED
NVME_USED
ILA_DEBUG

=

iables
is set
is set

is set
is set
is set
is set

: Jopt/Xilinx/Vivado/2016.4/bin/vivado
: Vivado v2016.4 (64-bit)

n FGT”
"xcku@60-ffvall56-2-e"
"/home/balthasar2/cards/FGT/portal 20170413/b _route_design.dcp"

"/home/balthasar2/repos/snap"
"/home/balthasar2/repos/snap/hardware/action _examples/hdl _example"

"FALSE"
"FALSE"
"FALSE"
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We implemented the symmetric block cipher Blowfish

Hasso
in hardware LatHEr
m Blowfish: symmetric block cipher with 64 bit blocks and =: :_:_:

32 to 448 bit keys ==

m Free, easy to implement, relatively fast M
H I:I [l E E“ |: FE: WD
MODE DECRYP
e CACHELINE BYTES
CACHELINE_BYTES 128

o SET_KEY: use byte count bytes from input buffer to
initialize the key for subsequent en-/decrypt operations

o ENCRYPT: encrypt byte count plaintext bytes in input

buffer and store the result in output buffer I ST SaTTiE T ]
st f snap _addr 1nput data;
o DECRYPT: decrypt byte count ciphertext bytes in input SUULCC SHET IR DI BeriE

32 T mode;
buffer and store the result in output buffer 32

t data length;
OWTLSN ] oD 1: i

10



balthasar2@plauth-ws:

Checking Xilinx Vivado:
Path to vivado is set to

Vivado version is set to:

CARD variables
Setting FPGACARD

S ./snap_settings

: fopt/Xilinx/Vivado/2016.4/bin/vivado
Vivado v2016.4 (64-bit)
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We implemented the symmetric block cipher Blowfish
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. A
of P_t e P; Y
bf_S_t g_S; = Em mm =
. . . o I N W .
snapu32_t process_action(snap_membus_t * din_gmem, snap_membus_t * dout_gmem, action_reg * action_reg) — 7 —

snapu64_t inAddr, outAddr;
snapu32_t byteCount, mode, retc;

(mode) {
action_setkey(din_gmem, inAddr, byteCount); 5
action_endecrypt(din_gmem, inAddr, dout_gmem, outAddr, byteCount, 0);
action_endecrypt(din_gmem, inAddr, dout_gmem, outAddr, byteCount, 1);

En/Decrypt
Datapath
Keylnit
Datapath

Control Statemachine 12

translates to

S&P
Arrays




Performance optimization depends on a detailed

analysis of different aspects

of the AFU design

m Relevant parts of the AFU design
must be analyzed to locate
bottlenecks

m Blowfish-AFU: Throughput oriented
scenario, compare memory and
encryption bandwidth

» Memory interface suports up to 16
times the encrypt throughput

» Multiple instances of encrypt
hardware can acheive overall
speedup

400.0
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—— Memory (MiB/sec) ==#= Encrypt (MiB/sec)

En/Decrypt
Datapath

Keylnit

Datapath

Control Statemachine 13
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Performance optimization requires a deeper
understanding of the underlying hardware
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m To support multiple parallel encrypt, resource
conflicts must be eliminated

m Block encrypt uses the bf_f() function: four
sequential argument dependent read operations

m Multiple instances of bf_f() require independent
read ports to the S-Array; implementation
provides Dual-Port-RAM

» Solution: More Read-Only Ports can be acheived
by providing multiple Copies of the S-Array

bf_halfBlock_t bf f(bf_halfBlock t h)

bf SiE t a

(bf_SiE_t)(h >> ),

(bf_SiE_t)(h >> ),

(bf_SiE_t)(h >> 8),

(bf_SiE_t) h;

((g_s[e][a] + g_S[1][b]) " g_S[2][c]) + g_S[3][d];

14



Performance optimization requires a deeper
understanding of the underlying hardware
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t5] Module Hierarchy

T
BRAM | DSP | FF LT Latency|Interval | Pipeline type
= @ his_action 78 0 20868 47824 undef ! none
¥ @ process_action 48 0] 16887: 41814 undef :none
= @ action_endecrypt 30 0 12281:17069: 1~225% 1 ~ 22 none
= o bf_encryptline 0 0 3993 (7071 {129 129 none
O )
b e bf decryptlLine 0 0 3992 (7074 121 121 none
e bf splitLine 0 0 0 0 0 0 none
e bf joinLine 0 0 0 0 0 0 none
b @ action_setkey 2 0 4008 ;24359 undef :none
= Resource(blowfish) &3
Current Module : hls_action > process_action > action_endecrypt >
Resource\Control Step Cco Cl c2 15l c4 =5
1-49 ®#I/0 Ports
50 EIMemory Ports
51 g_S_V_B(pa) read read read read
52 g_S_W_4(pl) read read read read
53 g_S_V_1(p0) read read read read
54 g_S_V_3(pa) read read read read
55 g_S_V_2(pl) read read read read
56 g_S_W_3(pl) read read read read
57 g_S_V_7(pl) read read read read
58 g_S_V_1(pl) read read read read
59 g_S_V_5(pl) read read read read
60 g_S_W_2(p0o) read read read read
61 g_S_V_4(po) read read read read
62 g_S_V_B(pl) read read read read
63 g_S_V_7(p0) read read read read
64 g_S_W_5(p0) read read read read
65 g_S_v_8(pl) read read read read
66 g_S_V_8(po) read read read read

67-... FExpressions

Performance |Resource

g S

bf fLine(bf_halfBlock_t res|

(bf_uiBpL_t iBlock = @; iBlock <

bf SiE t a

b

C

d
res[iBlock] = ((g_S[iBlock/2][@][a] + g S[iBlock/2][1][b]) ~
g S[iBlock/2][2][c]) + g S[iBlock/2][3][d];

8

1, bf_halfBlock t h[

; ++iBlock)

(bf_SiE_t)(h[iBlock] >> 24),
(bf_SiE_t)(h[iBlock] >> 16),
(bf _SiE_t)(h[iBlock] >> 8),

(bf_SiE_t) h[iBlock];
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Thank you! Questions?
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