Institute of Operating Systems and Computer Networks

EndBox: Scalable Middlebox Functions Using Client-Side Trusted Execution

David Goltzsche, Signe Rüsch, Manuel Nieke, Rüdiger Kapitza 02.03.2018

Motivation	Design	Implementation	Evaluation	Conclusion
Motivation				

- Network attacks on companies and organizations
- 2016: ¹/₃ of hacked organizations reported customer, opportunity and revenue loss > 20 % (Cisco 2017 Cybersecurity Report)
- Filtering and inspecting of encrypted traffic often problematic
- Terminating TLS connections introduces new security risks, e.g. insecure ciphers¹ sicherheitsforscher an AV-Hersteller: "Finger weg von HTTPS"

https://www.heise.de/newsticker/meldung/US-CERT-warnt-vor-HTTPS-Inspektion-3660610.html

Design

Implementation

Evaluation

Conclusion

Motivation

Intrusion Prevention Systems

- Detect network attacks by monitoring traffic
- Employed on central middleboxes, used to improve network performance and security
- High costs for operators

Implementation

Evaluation

Conclusion

Motivation

Problems of Current Middleboxes

- Centralized hardware ...
 - is expensive: ≈ \$50.000 in 5 years in small networks (Sherry et al., 2012)
 - is vulnerable
 - has limited scalability

Implementation

Evaluation

Conclusion

Motivation

Problems of Current Middleboxes

- Centralized hardware . . .
 - is expensive: ≈\$50.000 in 5 years in small networks (Sherry et al., 2012)
 - is vulnerable
 - has limited scalability
- Offloading to cloud services . . .
 - introduces higher complexity and latency
 - requires trust in cloud provider
 - processing of encrypted traffic problematic

\rightarrow Shifting middleboxes to clients!

Technische Universität Braunschweig

Implementation

Evaluation

Conclusion

Motivation

Client-Side Functionality

- Advantages:
 - Better utilization of clients
 - Scales well with number of clients
- Problems:
 - Both users and client machines cannot be trusted
 - Users have to be forced to use middlebox function
- \rightarrow Leverage trusted execution!

Design

Implementation

Evaluation

Conclusion

Intel's Software Guard Extensions (SGX)

Basics

- Extension to Intel's x86 CPUs
- Introduced with Skylake series
- Isolated environment for trusted execution, called *enclave*
- Encrypted system memory and integrity checks
- No access from OS

Design

Implementation

Evaluation

Conclusion

Motivation

Requirements

- Enforcement: no circumvention
- Integrity of middlebox function & privacy of user data
- Manageability: centrally update middlebox functions
- Generality: support for multiple middlebox functions
- Scalability & performance

5.4			
IVI	OTIN	/atic	n
	000	auro	

Implementation

Evaluation

Conclusion

Design

Objectives

- \rightarrow Middlebox functions run inside enclave!
 - Network owner can keep control over network, machines, and configurations
 - Execution of middlebox functions on client can be enforced
 - Encrypted traffic can be analyzed locally, no MitM

Motivation	Design	Implementation	Evaluation	Conclusion
Design				

Leveraging VPN Tunnels

- Packets are routed through SGX enclaves using VPN tunnel
- Terminate VPN connection inside enclave
- Central hardware now less complex

N/I	<u></u>	in	+io	-
111	ΟL	IVe	i LIU	

Implementation

Evaluation

Conclusion

Design

EndBox VPN Client Architecture

Integrity & Privacy

Motivation	Design	Implementation	Evaluation	Conclusion
Design				
Configurat	tion Update N	Mechanism	Mana	ageability

- Centrally update distributed middlebox functions
- Update should be provable
- VPN server enforces update by dropping packets

Design

Implementation

Evaluation

Conclusion

Implementation

VPN and Middlebox Functions

- OpenVPN v2.4.0
- Click Modular Router
- Multiple use cases:
 - Forwarding (FOR)
 - Firewall (FW)
 - Intrusion Prevention (IDPS)
 - Load balancer (LB)
 - DDoS protection (DDoS)

and Computer Networks

IVI	otiv	ation	

Implementation

Evaluation

Conclusion

Evaluation

Performance Evaluation – Use Cases

30-39 % overhead for EndBox

Motivation	Design	Implementation	Evaluation	Conclusion
Evaluation				

Scalability Evaluation

- Clients generate 200 Mbps of traffic
- Click runs with only one instance

N/	o+in	ation	
111	OLIV	ation	

Implementation

Evaluation

Conclusion

Evaluation

Scalability Evaluation – Use Cases

• 2.6-3.8x higher throughput using EndBox

B /	1.4.4		1.00	
IV	IOL	IVa	lion	

Implementation

Evaluation

Conclusion

Conclusion

- Shifting middlebox functions from central middleboxes to clients
 - $\rightarrow\,$ Improve scalability and performance
- Supports generic middlebox functions with Click
- Enforce execution by using OpenVPN and SGX enclaves
- Throughput up to 3.8x higher than centralized deployment
- Accepted at DSN'18:
 - TÚ Braunschweig: David Goltzsche, Signe Rüsch, Manuel Nieke, Nico Weichbrodt, Rüdiger Kapitza
 - Université de Neuchâtel: Sébastien Vaucher, Valerio Schiavoni, Pascal Felber
 - Imperial College London: Pierre-Louis Aublin, Paolo Costa, Peter Pietzuch
 - TU Dresden: Christof Fetzer

Signe Rüsch | EndBox | 17

Backup Slides

N/I	0+i1	o+ic	
111	OLIV	allo	211

Implementation

Evaluatio

Conclusion

Related Work

- ETTM (Dixon et al., 2011):
 - Middlebox functions on end hosts secured by TPM
 - Fully decentralized, employs Paxos instead of trusted server
- Eden (Ballani et al., 2015):
 - Specialized hardware on end hosts
 - Higher performance, but no commodity hardware
- Middlebox functions in the cloud (Sherry et al., 2012; Lan et al., 2016)
 - Good scalability, but increased complexity and latency
 - Privacy and legal issues

Motivation	Design	Implementation	Evaluation	Conclusion
Design				

EndBox Key Management

- Attacker should not create unauthorized VPN connection
- SGX remote attestation & sealing features and Certificate Authority

Motivation	ä		ñ							
		v		0	t	ν	а	۱t	0	

Implementation

Evaluation

Conclusion

Design

Handling of encrypted traffic

- Extract TLS session key and store in enclave
- No decryption and traffic inspection on remote server

Motivation	Design	Implementation	Evaluation	Conclusion
References I				

- Hitesh Ballani u. a. "Enabling End-Host Network Functions". In: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. SIGCOMM '15. 2015.
- Cisco. Cisco 2017 Annual Cybersecurity Report: Chief Security Officers Reveal True Cost of Breaches and the Actions Organizations are Taking. https://newsroom.cisco.com/press-releasecontent?articleId=1818259. 2017.
- Chang Lan u. a. "Embark: Securely Outsourcing Middleboxes to the Cloud". In: 13th USENIX Symposium on Networked Systems Design and Implementation. NSDI '16. 2016.

Design

Implementation

Evaluation

Conclusion

References II

- Jürgen Schmidt. US-CERT warnt vor HTTPS-Inspektion. https://www.heise.de/newsticker/meldung/US-CERTwarnt-vor-HTTPS-Inspektion-3660610.html. 2017.
 - Justine Sherry u. a. "Making Middleboxes Someone Else's Problem". In: *SIGCOMM*. 2012.

