
Bringing Memory Forensics and Virtual Machine Introspection
to Production Environments

Benjamin Taubmann, Hans P. Reiser

ABSTRACT
Virtual machine introspection is a valuable tool that can help to
increase the security of systems because it provides an untampered
view on the system state and can detect malicious so�ware that
hides itself. Additionally, due to the hardware virtualization layer,
VMI-based monitoring solutions cannot be easily detected and
a�acked. In this paper we describe problems and possible solutions
that are related to implement VMI in production environments. In
detail, we discuss the problem of memory access, provide solutions
that e�ciently interpret and extract information frommainmemory
and discuss how VMI can be adopted to certain use cases.

1 INTRODUCTION
Virtual machine introspection (VMI) is the process of analyzing
the low level state (e.g., contents in memory and CPU registers)
of a virtual machine and extracting high level information out
of it such as the process list of the operating system. It can be
considered as a special form of memory forensics with the focus on
virtual machines. It has been shown, that VMI is a valuable method
for IT-security, e.g., for analyzing the behavior of malware and
a�ackers [1, 2] as well as, for intrusion detection systems [3–5]. �is
is mainly caused by the fact that it is much harder for an a�acker to
detect VMI based monitoring and to tamper the acquisition process
compared to in-guest agents such as virus scanners.

One challenge for doing memory forensics in practice is to get
access to the main memory of a system. �is usually works in
small research environments but is not available in production
environments such as cloud computing or on mobile devices. �e
biggest challenge ofmemory forensics is the problem of interpreting
the low level data sources, e.g., bridge the semantic gap e�ciently.
For o�-line analysis this has already been implemented by tools
such as volatility and rekall. But these tools are not fast enough
for VMI applications aim to extract ephemeral data on-line from
running systems without killing the performance of the monitored
system. To sum up, we addresses the following research questions:

(1) How to access the memory of production systems such as
cloud environments or mobile devices?

(2) How to locate and extract high level information e�ciently
from main memory?

(3) How to adopt VMI methods to the requirements of produc-
tion environment use cases?

2 DATA ACQUISITION
�e main requirement for memory forensics is to have access to
the system state which is mainly spread across CPU registers, main
memory and hard disk. �e focus of this research is the analysis of
the state which is stored in main memory and in the content of the
CPU registers. We discuss the problem of memory access for two
di�erent types of systems which are commonly used nowadays:

virtual machines in cloud computing and mobile devices such as
smartphones.

Virtual Machines in Cloud Data Centers. Ge�ing the contents
of main memory of a virtual machine is usually easy as long as
access to the hypervisor is given and when the hypervisor provides
functions to access it. However, cloud computing providers do not
expose this interface to their customers. �us, customers do not
have any means to perform VMI based analysis on their virtual
machines. �e CloudPhylactor [6] architecture discusses an ap-
proach that enables cloud customers to perform VMI operations
on their virtual machines in cloud environments. �erefore, we
introduce the concept of two types of virtual machines: production
(PVM) and monitoring VMs (MVM) whereas the MVM can access
the memory of a PVM. �us, a user can freely choose which kind
of VM he wants to start at the cloud provider and perform VMI
on his VMs. With this concept we move the VMI monitoring tool
from the most powerful VM (dom0 in the case of XEN) to a VM
with restricted permissions. �us, if the interpretation routine of
the monitoring tool is a�acked with cra�ed data in main memory,
an a�acker can gain only access to the VMs of the same user but
not to VMs of all customers running on the same cloud node.

Mobile Devices. Mobile Devices contain many information that
can be used for forensic investigations. We described two ap-
proaches to access the memory of mobile ARM-based devices for
memory forensics and virtual machine introspection. �is �rst
approach employs a cold boot a�ack to access the contents in main
memory of a smart-phone. By using a minimal operating system
most of the data is kept unmodi�ed and available for analysis [7].
Additionally, we discussed whether processor extensions of mobile
devices such as the ARM TrustZone can be used to monitor the
system state of the normal operating system in order to improve
the trustworthiness of the data acquisition [8]. �erefore, we aimed
to implement a library in the TrustZone that has a similar interface
as libvmi so that already implemented VMI tools can be ported to
the TrustZone.

3 INFORMATION EXTRACTION
�e key aspect for on-line memory forensics and VMI is the perfor-
mance of the information extraction routine. We have discussed
two approaches that for �nding the ephemeral cryptographic key
material from TLS connections in the memory of applications.

Brute Force. In the �rst case, we extract the key material from the
address space of a user space program running in a virtual machine
whenever we detect in the network tra�c that it negotiates a new
TLS connection. To extract the key we implemented a brute force
approach that scans the memory of an application and tries to
decrypt the �rst TLS message with all byte sequences in main
memory [9]. �e runtime of this approach depends on the size of
the address space and is very resource intensive. Even by applying



several optimizations that improve the performance, this approach
is infeasible for applications withmany concurrent TLS connections
since taking a snapshot is expensive as well as the brute force
approach.

Recomputing data structures. In the second case we use a dif-
ferent approach to improve the key extraction process [10] We
instrument the control �ow of Android applications to extract the
key material whenever it calls functions of the TLS library that
access the key material. We have tested this approach on a smart-
phone where the exact layout of the data structure holding the
information was not known. �e challenge of this approach is to
�nd the exact position in the data structures that hold the TLS
key. To reconstruct the data structure layout, we implemented an
algorithm that bridges the semantic gap and partially reconstructs
the data structure layout of the running TLS library. To bootstrap
this approach, we use the brute force method to locate the TLS key
in the address space of the application. �en, we compute a path
from the parameters of functions (pointers on the stack) accessing
the data structure to the exact position of the key in it. Finally, we
use the computed path to extract the TLS key at run time of the ap-
plication whenever the control �ow is intercepted. We have shown
that our proposed approach works and is feasible to extract the TLS
sessions from Android applications and improves the performance
of data extraction.

4 APPLICATIONS
VMI is a very useful method but fully tracing a system is o�en not
feasible since the performance impact is big. Nevertheless, we found
applications where VMI can be adopted to meet the performance
requirements.

Honeypots. �e performance impact of tracing is not the most
important aspect of honeypots as they do not have any production
value. However, VMI-based stealthy tracing allows to catch new
a�acks which might not occur when an a�acker detects that he is
monitored [2].

Malware Analysis. VMI is a valuable technique for malware anal-
ysis since applications are not able to directly detect any in-guest
agent and thus do not change their behavior and hide malicious
activity. We used VMI to trace the executed system calls of malware
and stored them in a database [1]. �is data might help to build
e�cient VMI-based virus scanners in the future by tracing only
relevant data.

Intrusion Detection System. IDS can bene�t from the untampered
view on the system state provided by VMI. However, it is important
that the monitoring does not a�ect the performance of the pro-
duction VMs. �erefore, we discussed the approach of performing
light-weight VMI tracing to detect a�acks and heavy weight tracing
in the case of an incident [4, 5]. Leight-weight is for example reg-
ularly extracting the process list or scanning for known malware
signatures. A Heavy-weight mechanism is for example the tracing
of all system and library/function calls. By selecting between these
modes we can adopt VMI to each speci�c use case.

5 CONCLUSION
We presented practical solutions for problems in the �elds of virtual
machine introspection and memory forensics in production envi-
ronments. We discussed how to acquire data, bridge the semantic
gap in order to e�ciently extract information and �nally showed
practical use cases.

REFERENCES
[1] B. Taubmann, B. Kolosnjaji, Architecture for resource-aware vmi-based cloud

malware analysis, in: SHCIS’17.
[2] B. Taubmann, S. Sentanoe, H. P. Reiser, Virtual machine introspection based ssh

honeypot, in: SHCIS’17.
[3] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, R. Sion, Sok: Introspections on trust

and the semantic gap, in: IEEE Symposium on Security and Privacy (SP).
[4] A. Fischer, T. Ki�el, B. Kolosnjaji, T. K. Lengyel, W. Mandarawi, H. P. Reiser,

B. Taubmann, E. Weishäupl, H. de Meer, T. Müller, M. Protsenko, CloudIDEA: a
malware defense architecture for cloud data centers, in: C&TC 2015.

[5] F. Menges, F. Bhm, M. Vielberth, A. Puchta, B. Taubmann, N. Rakotondravony, T.
Latzo, Introducing DINGfest: An architecture for next generation SIEM systems,
Short Paper, GI Sicherheit 2018 (2018).

[6] B. Taubmann, N. Rakotondravony, H. P. Reiser, CloudPhylactor: harnessing
mandatory access control for virtual machine introspection in cloud data centers,
in: IEEE TrustCom-16.

[7] B. Taubmann, M. Huber, L. Heim, G. Sigl, H. P. Reiser, A lightweight framework
for cold boot based forensics on mobile devices, in: ARES 2015.

[8] M. Guerra, M. Correia, B. Taubmann, H. P. Reiser, ITZ: an introspection library
for ARM TrustZone, in: Proceedings of INFORUM 2017, INFORUM, 2017.

[9] B. Taubmann, C. Frädrich, D. Dusold, H. P. Reiser, TLSkex: harnessing virtual
machine introspection for decrypting TLS communication, in: DFRWS EU 2016.

[10] B. Taubmann, O. A. Abduljaleel, H. P. Reiser, Droidkex: Fast extraction of
ephemeral tls keys from the memory of android apps, in: DFRWS USA.

2


	Abstract
	1 Introduction
	2 Data Acquisition
	3 Information Extraction
	4 Applications
	5 Conclusion
	References

