
GI-Fachgruppentreffen 2018 - Proposed Talk:

Fast and Accurate Functional Simulation
for Dynamic Full System Analysis

Marc Rittinghaus Frank Bellosa
Operating Systems Group

Karlsruhe Institute of Technology (KIT)
{firstName}.{lastName}@kit.edu

A common technique to identify bugs and discover vulner-
abilities in applications is to run the software of interest
in a functional, that is instruction-level, simulator such as
Valgrind [10] or Pin [6] and employ dynamic analysis. For
operating system centric research a functional full system
simulation (FFSS) is required which includes the operating
system in the simulation. FFSS gives developers and secu-
rity researchers the means to inspect every operation carried
out, even in privileged kernel-mode components. This way
Google engineers identified over 20 kernel security vulnerabil-
ities in Windows 8 by analyzing the memory access patterns
at the system call interface [4].

While functional full system simulation has thus generally
proven to be a very powerful tool, a well-known limitation
is its immense slowdown. Depending on the required level
of detail and the degree of instrumentation, running a work-
load with FFSS is up to multiple orders of magnitude slower
compared to native execution. We have measured a slow-
down of 30x with QEMU [1] and up to 1000x with the more
accurate Simics [7] simulator. Similar numbers have also
been reported by other researchers [5, 8]. In practice, the
slowdown creates severe obstacles for a comprehensive use
of functional full system simulation:

Interactivity Scenarios that should capture interactivity
with a human user or an external network device are not
feasible. A single key stroke can quickly take from multiple
seconds up to minutes until being fully processed. Network
protocols such as TCP in turn react to the situation with
throttling and timeouts.

Accuracy of Results Since the simulation considerably
slows down the guest, activities dependent on external events
such as I/O operations appear to complete faster - a phe-
nomenon called time dilation by Chen et al [9]. This distorts
measurements and produces unrealistic behavior.

Coverage Evaluating a test scenario in full length can take
considerable time, forcing researchers to reduce coverage.
The authors of the Google study summarize that the slow-
down was the primary restrictive factor, which limited the
coverage of their analysis to the system boot phase and short
desktop usage [4]–potentially missing further vulnerabilities.

SimuBoost [11] strives to drastically reduce the slowdown
of functional full system simulation, thereby allowing re-
searchers to accurately analyze interactive, network-centric,

Virtualizationi[0] i[k] i[n]

t

Node 

0

Node 

k

Node 

n

vNode

Simulationi[0] Simulationi[0]

Simulationi[k ] Simulationi[k ]

Simulationi[n ] Simulationi[n ]

i[0]i[0] i[k ]i[k ]Serial . . .. . .

Figure 1: The workload is executed with fast vir-
tualization. Checkpoints at the interval boundaries
serve as starting points for parallel simulations.

and long-running workloads. The core idea is to run the
workload in a virtual machine (VM) using fast hardware-
assisted virtualization. At regular intervals1 the hypervi-
sor takes a snapshot of the VM state (i.e., memory content,
device states, etc.). The checkpoints then serve as start-
ing points for simulations, enabling to simulate and analyze
each interval simultaneously in one job per interval. By us-
ing multiple nodes (i.e., CPU cores or hosts) a parallelized
simulation of the target workload can be achieved (Figure 1).

Functional full system simulation can be build to always pro-
duce identical runs. Hardware-assisted virtualization, how-
ever, is subject to non-deterministic input such as erratic
I/O completion timing. SimuBoost records this non-deter-
minism and uses deterministic replay [2, 3, 12] to accurately
reproduce the execution in the simulations, including realis-
tic timing behavior.

Both checkpointing and recording non-determinism need to
be geared toward low run time overhead to (1) retain the ex-
ecution speed difference that drives the parallelization, (2)
keep perturbations on the examined workload as small as
possible, and (3) preserve seamless interactivity. The simu-
lation nodes on the other side need to quickly receive and
load the checkpoints. Furthermore, the resource consump-
tion (e.g., memory) of simulations should be kept low so as
to permit a maximum degree of parallelism on each host.

The proposed talk will discuss technical details on the mech-
anisms we have developed to solve the challenges in each
area and present results from the prototype we have built.

1Between hundreds of milliseconds to multiple seconds.



1. REFERENCES
[1] F. Bellard. Qemu, a fast and portable dynamic

translator. In USENIX Annual Technical Conference,
FREENIX Track, pages 41–46, 2005.

[2] T. C. Bressoud and F. B. Schneider. Hypervisor-based
fault tolerance. ACM Trans. Comput. Syst.,
14(1):80–107, 1996.

[3] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. Revirt: Enabling intrusion analysis
through virtual-machine logging and replay. SIGOPS
Oper. Syst. Rev., 36(SI):211–224, Dec. 2002.

[4] M. Jurczyk and G. Coldwind. Identifying and
exploiting windows kernel race conditions via memory
access patterns. Presented as Black Hat, 2013.

[5] S. Kim, F. Liu, Y. Solihin, R. Iyer, L. Zhao, and
W. Cohen. Accelerating full-system simulation
through characterizing and predicting operating
system performance. In Performance Analysis of
Systems & Software, 2007. ISPASS 2007. IEEE
International Symposium on, pages 1–11. IEEE, 2007.

[6] C. Luk et al. Pin: building customized program
analysis tools with dynamic instrumentation.
volume 40. ACM, 2005.

[7] P. S. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,

A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50–58, 2002.

[8] P. S. Magnusson, F. Larsson, A. Moestedt, B. Werner,
J. Nilsson, P. Stenström, F. Lundholm, M. Karlsson,
F. Dahlgren, and H. Grahn. Simics/sun4m: A virtual
workstation. In Usenix Annual Technical Conference,
pages 119–130, 1998.

[9] A. M. G. Maynard, C. M. Donnelly, and B. R.
Olszewski. Contrasting characteristics and cache
performance of technical and multi-user commercial
workloads. In ACM SIGPLAN Notices, volume 29,
pages 145–156. ACM, 1994.

[10] N. Nethercote et al. Valgrind: A framework for
heavyweight dynamic binary instrumentation.
SIGPLAN, 42(6), 2007.

[11] M. Rittinghaus, K. Miller, M. Hillenbrand, and
F. Bellosa. Simuboost: Scalable parallelization of
functional system simulation. In Proceedings of the
11th International Workshop on Dynamic Analysis
(WODA 2013), Houston, Texas, Mar. 16 2013.

[12] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin.
V2e: Combining hardware virtualization and
softwareemulation for transparent and extensible
malware analysis. In Proceedings of the 8th ACM
SIGPLAN/SIGOPS Conference on Virtual Execution
Environments, VEE ’12, pages 227–238. ACM, 2012.


