Mitigating AVX-Induced Performance Variability with Core
Specialization

Mathias Gottschlag, Frank Bellosa

Operating Systems Group
Karlsruhe Institute of Technology
E-mail: os@itec.kit.edu

CPU performance is increasingly limited by the
power dissipation of the chip. In this situation, one
method to increase power efficiency — and thereby also
performance — is to add accelerators for specific tasks.
These accelerators can be switched off when inactive for
prolonged periods of time. When they are used, how-
ever, they can consume significant additional power.

To prevent excessive peak currents and voltage in-
stability, the rest of the chip therefore might have to
temporarily reduce its frequency. One example for such
a situation can be found in current Intel CPUs with
support for AVX2 and AVX-512 vector instructions.
Whenever a core executes one of these instructions,
the core automatically reduces its frequency [1]. This
behavior is documented in the form of different AVX2
and AVX-512 turbo frequencies for the affected CPUs.

As frequency changes are not instantaneous, they
also affects scalar code following the vector instruction,
which can lead to significant overall performance loss,
even if only a small part of the code is vectorized: For
example, in a web server scenario, enabling AVX-512
instructions for SSL with ChaCha20-Poly1305 encryp-
tion caused a 10% slowdown for the whole web server
stack, even though the SSL library only made up for
2.5% of all executed instructions [3].

If, as in this example, the performance of code de-
pends significantly on the instruction set usage of other
unrelated code running on the same core, two problems
arise: First, on a multi-tenant system, a user can signif-
icantly degrade the performance for other users of the
same system simply by periodically executing AVX-512
instructions. The potential for such unexpected perfor-
mance degradation can be especially significant for any
software workload with real-time requirements.

Second, even when all code on the system is con-
trolled by one single user, development and deploy-
ment of complex software becomes more difficult and
error-prone, as seemingly insignificant changes such as
a minor SSL library update can have significant perfor-

mance impact as described above. As a result, software
changes need to be closely monitored for their impact
on overall performance and instruction set usage needs
to be coordinated over the whole software stack.

The ability to limit the performance impact of prob-
lematic code would be highly beneficial to system re-
liability. We therefore propose a technique to migrate
any code executing AVX2 and AVX-512 instructions
to dedicated cores. We show that this type of core
specialization can mitigate the impact of AVX-induced
frequency reduction on performance as well as perfor-
mance predictability. This result yields an additional
interesting insight: Even though modern Intel server
CPUs are commonly assumed to be symmetric CPUs,
it can be advantageous to think of these systems as re-
configurable heterogeneous systems with slow cores for
vectorized code and fast cores for scalar code.

1 Approach

When a core executes AVX2 or AVX-512 instruc-
tions, current Intel CPUs only reduce the frequency
of that single core to compensate for the increased
power consumption [1]. As a result, if a subset of the
cores is limited to scalar code, the system therefore
behaves like a heterogeneous system — some cores sup-
port vector code and run at lower frequency, whereas
the other cores only execute scalar code, but at sig-
nificantly higher frequency. We therefore propose a
variant of core specialization to improve performance
predictability on these systems by executing code con-
taining AVX instructions on a set of dedicated cores.

Although we expect a fully automatic implementa-
tion of such a policy to be possible, we demonstrate
the general viability of the concept by manually instru-
menting the nginx web server to execute the OpenSSL
functions for encryption and decryption on a separate
core using the sched_setaffinity function.



2 Evaluation

We evaluated this prototype with a setup derived
from tests at Cloudflare [3]: We placed the nginx web
server on 10 cores of a system with a 14-core Core
i9 processor, with the other 4 cores running the wrk2
benchmark client. The web server served a simple web
page which was compressed at runtime with the brotli
compression method. The server used HTTPS with ei-
ther AVX2 or AVX-512 implementations of ChaCha20-
Poly1305 for encryption and decryption.

Note that OpenSSL with support for AVX-512 is
14% faster than when using only AVX2 instructions,
which makes the use of AVX-512 worthwhile in other
situations. In our evaluation setup, however, the
throughput of the whole web server stack dropped from
7184 requests per second when using AVX2 to 6703
requests per second when using AVX-512 (6.7% over-
head). If, instead, all encryption and decryption code
was executed on a separate core, the system achieved
a throughput of 7366 (AVX2) and 7205 (AVX-512) re-
quests per second. These numbers show a 2.5% (AVX2)
and 7.4% (AVX-512) speedup over a system without
core specialization. Performance with core specializa-
tion is generally higher than without, which shows that
core specialization can completely mitigate the perfor-
mance impact of AVX-induced frequency reduction.

To show that this improvement is caused by in-
creased frequency of the non-AVX cores, we measure
the CPU frequency during all these experiments. As
expected, the average frequency of all cores is almost
completely proportional to the throughput, ruling out
other effects caused by frequent thread migration.

3 Related Work

Our proposed approach is a variant of core special-
ization. Core specialization techniques dedicate cores
to a subset of the overall functionality of the system
by only executing a subset of a program code on each
core. For example, FlexSC [5] and SchedTask [2] are
techniques which improve cache locality by scheduling
threads on cores which already have the working set of
the next segment of code in their local cache.

On heterogeneous systems consisting of processors
with different microarchitectures, core specialization is
instead used to place code on the type of core which
provides the best power efficiency [|4]. This type of core
specialization is most similar to our approach. We show
that cores of current Intel CPUs have different per-
formance characteristics depending on whether AVX-
512 instructions are executed. We therefore propose to

treat these systems like heterogeneous systems and to
dedicate some cores to AVX-512 code.

4 Conclusion

Accelerators, while providing an energy-efficient
path to improve CPU performance, increase the peak
current consumption of the chip and therefore can force
the rest of the chip to reduce its frequency whenever
they are active. Current Intel CPUs show this behavior
and provide lower maximum frequencies for code exe-
cuting AVX instructions. These frequency reductions
can affect unrelated scalar code.

In order to improve performance predictability, we
propose a variant of core specialization where threads
are migrated to a separate set of cores whenever they
execute AVX-512 instructions, to be migrated back
once the AVX-512-accelerated portion of the program
has finished. Our prototype demonstrates the viability
of such approaches and is able to completely mitigate
the performance impact of AVX-512 instructions in a
web server scenario. Further research has to explore
methods to migrate threads as well as techniques to
efficiently determine the AVX-512 accelerated parts of
the program.

References

[1] Wikichip: Frequency Behaviour - Intel.
https://en.wikichip.org/wiki/intel/
frequency_behavior.

[2] P. Kallurkar and S. R. Sarangi. Schedtask: a
hardware-assisted task scheduler. In Proceedings of
the 50th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 612-624. ACM,
2017.

[3] V. Krasnov. On the dangers of intel’s frequency
scaling, 2017. https://blog.cloudflare.
com/on-the-dangers-of-intels-frequency-
scaling/|

[4] J. C. Saez, M. Prieto, A. Fedorova, and S. Blago-
durov. A comprehensive scheduler for asymmetric
multicore systems. In Proceedings of the 5th Euro-

pean conference on Computer systems, pages 139—
152. ACM, 2010.

[5] L. Soares and M. Stumm. FlexSC: Flexible system
call scheduling with exception-less system calls. In
Proceedings of the 9th USENIX conference on Op-
erating systems design and implementation, pages
33-46. USENIX Association, 2010.


https://en.wikichip.org/wiki/intel/frequency_behavior
https://en.wikichip.org/wiki/intel/frequency_behavior
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/

	Approach
	Evaluation
	Related Work
	Conclusion

