Detecting Spectre Attacks by identifying Cache Side-Channel
Attacks using Machine Learning

Jonas Depoix
RheinMain University of Applied Sciences
Wiesbaden, Germany
jonas.depoix@student.hs-rm.de

ABSTRACT

The recently discovered Spectre vulnerabilities exploit design flaws
in the architecture of modern CPUs and pose a threat to computer
systems safety. In order to fix these vulnerabilities, changes to the
architecture of current processors are necessary. Previous software
mitigations are difficult to deploy and introduce considerable per-
formance hits.

In this paper we present a real-time detection system, which
identifies Spectre attacks by detecting cache side-channel attacks.
Building upon previous research in the field of cache side-channel
detection, we monitor Hardware Performance Counters to observe
the CPUs cache activity and use a neural network to analyze the
collected data. Since cache side-channels usually cause a very dis-
tinct cache usage pattern, our neural network is able to successfully
identify a Spectre attack with an accuracy of over 99%, in our test
environment.

CCS CONCEPTS

« Security and privacy — Side-channel analysis and counter-
measures;

KEYWORDS

Cache Side-Channel Attacks, Spectre, Hardware Performance Coun-
ters, Machine Learning, Neural Networks, Real-time Detection

1 INTRODUCTION

The first practical implementation of a cache-based side-channel
attack was presented in 2003 [52] and have evolved over the last cou-
ple of years in attacks such as EVICT+PRIME and PRIME+PROBE
by Osvik et al. [43], or the more recent FLUSH+RELOAD attack by
Yarom et al. [57]. Although these attacks have posed considerable
threats in the past, cache-based side-channel attacks have just re-
cently become even more relevant. This is due to the important role
they play in making the Spectre and Meltdown exploits possible,
which are currently having a disruptive impact on the way future
CPU generations will be designed [31, 38].

While Spectre and Meltdown can only really be fixed by up-
dating the CPUs hardware [31, 38], software solutions have been
found, which are able to mitigate those attacks for the price of
performance. In the case of Meltdown, KAISER was introduced by

WAMOS2018, August 2018, Wiesbaden

© 2018 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
WAMOS2018 4th Wiesbaden Workshop on Advanced Microkernel Operating Systems,
August 2018.

Philipp Altmeyer
RheinMain University of Applied Sciences
Wiesbaden, Germany
philipp.b.altmeyer@student.hs-rm.de

Maurice et al. [42] and implemented in Linux under the name of
kernel-page table isolation (KPTI) [11]. Similar solutions have been
implemented in Windows and Mac OS [27, 36]. While Spectre has
proven to be a lot harder to mitigate, different solutions have been
proposed for the individual spectre variants. Some solutions re-
quire editing the code of vulnerable software, which is a very costly,
tedious and error-prone task [12]. Other solutions have been inte-
grated into compilers like GCC and MSVC [40, 45, 53]. Therefore a
recompilation is needed, to mitigate a software’s vulnerabilities.

So in order for a user to be safe, he is required to update his
operating system (Meltdown) as well as all of his software (Spec-
tre), while being dependent on the publisher of these operating
systems and software to actually provide such updates. Also the
effectiveness of mitigations software publishers deploy is not al-
ways communicated transparently to the customers. Under these
conditions it is likely that users are unable to update their soft-
ware, simply forget to do so or are uncertain whether they are still
vulnerable.

But Cloud providers and their customers are exposed to an even
greater risk. Jann Horn has proven that Spectre variant 2 can be used
to read memory of a guest VM running on the same KVM hypervisor
as the attackers VM [25]. This means that a customer’s VM is
potentially vulnerable, even if its operating system and software is
kept up to date, if the hypervisor or another VM running on the
same last level cache (LLC) is outdated and therefore vulnerable.
Since keeping the hypervisor and guest VMs up to date, is out of
the control of a cloud providers customer, he has no way of being
certain that his data is safe or making sure it is.

The same applies to the cloud providers. Although they should
find themselves responsible for making sure their hypervisors are
not vulnerable, they have no way of making sure that VMs are kept
up to date. Therefore they can’t prevent unpatched VMs from being
a threat to other VMs.

These circumstances would make a potential real-time detection
system of such attacks a valuable tool. Such a real-time detection
system could identify an attacking process and terminate it im-
mediately. Also a cloud provider could move a VM to an isolated
machine, if it is suspected to have malicious intents. This way they
can keep all VMs on a hypervisor save without shutting down a
customer’s machine. Thereby the consequences of a falsely detected
attack are greatly reduced.

We believe that real-time detection of Spectre and Meltdown
attacks will play a big role in keeping users safe, until these attack
vectors can be shut down by proper hardware solutions. There-
fore we developed a real-time detection system for Spectre using
hardware performance counters and machine learning, which will
be presented in this paper. Similar approaches have been used for

WAMOS2018, August 2018, Wiesbaden

real-time detection of cache-based side-channel attacks, such as
FLUSH+RELOAD [2, 6, 8, 10, 14, 26, 41, 46, 51, 58, 59]. We build
upon this research and apply the proposed ideas to detect Spectre
attacks. We use Hardware Performance Counters to monitor the
caching behaviour of all running processes and then use a neural
network to identify malicious cache activity in the collected data.
In previous research neural networks have proven to introduce a
lot less false positives than heuristic approaches [10]. Since falsely
identifying a process as malicious could result in this process being
killed, keeping the amount of false positives as low as possible is
essential.

This paper is organized as follows: in Section 2 we will cover
some of the necessary background information to give a better
understanding of the subject. We will explain the general idea of
cache-based side-channel-attacks, specifically FLUSH+RELOAD
(Section 2.1) and how Meltdown and Spectre work (Section 2.4).
After explaining Hardware Performance Counters in (Section 2.5),
we will briefly cover the basics of neural networks (Section 2.6)
and look at which findings from previous research we can apply to
our work (Section 2.7). In Section 3 we will explain our approach
in greater detail, by illustrating the data set we used (Section 3.1)
and how we implemented our real-time detection system (Section
3.2). The results we achieved using our approach will be covered
in Section 4, followed by Section 5 and Section 6 in which we will
discuss about our results and the potential they offer for future
research.

2 BACKGROUND
2.1 Cache-based side-channel attacks

Side-channel attacks are attacks which do not directly exploit a
weakness in the implementation of a computer system, but instead
observe the side-effects which are generated by this implementation
and use the observed data to conclude on the systems internal
ongoings. This could be through various side effects, e.g. timing
information, power consumption [32] or electromagnetic leaks [1].

Cache-based side-channel attacks, also known as cache-timing
attacks, are types of side-channel attacks, which evolve around
exploiting the fact that loading something from a CPUs cache is a
lot faster than loading it from main memory. By timing how long it
takes to access a specific memory address, an attacker can conclude
whether the accessed data has already been in the cache or not. This
side effect can be exploited in different ways and various attacks
have made use of this.

The first practical implementation of a cache-based side-channel
attack was presented by Tsunoo et al. in [52], where they success-
fully used cache timings to attack the Data Encryption Standard
(DES). The EVICT+PRIME and PRIME+PROBE attacks have been
introduced by Osvik et al. and were used to attack the Advanced En-
cryption Standard (AES) [43]. More recently the FLUSH+RELOAD
attack by Yarom et al. [57] has seen a lot of use due to its sim-
ple implementation and efficient, fast and reliable results. It has
seen applications in attacking various computations such as crypto-
graphic algorithms [7, 28, 57], kernel addressing information [22],
web server function calls [60] and user input [23, 37, 48].

As explained in Section 2.4, cache-based side-channel attacks
also play an important role in making the Meltdown and Spectre

Depoix, Altmeyer

attacks possible. Although it would be possible to use other type
of cache-based side-channel attacks, the FLUSH+RELOAD attack
is frequently chosen, as suggested by the original Meltdown and
Spectre implementations [31, 38].

Due to the relevance of FLUSH+RELOAD we are going to mainly
focus on this attack. In the following paragraphs we will explain
the FLUSH+RELOAD attack in greater detail, to provide a better
understanding of how this particular attack works, as well as cache-
base side-channel attacks in general.

As per usual a FLUSH+RELOAD attack involves two parties. A
victim and a spy process. The victim is performing an operation,
while the spy tries to get information about what the victim is
doing.

In order for the FLUSH+RELOAD attack to work in this case,
three preconditions have to be met. First of all the spy has to be
able to synchronize with the victim. Meaning that he has to start
the attack as the victim starts the cryptographic operation. He also
needs to have access to an instruction which allows him to evict a
specific area from the CPUs cache. Usually this only is the case, if
the instruction can be called with user-level privileges. But most
importantly the CPU must have a mechanism like Kernel Same-
page Merging (KSM) [4] or Transparent Page Sharing (TPS) [54]
enabled [10].

KSM allows processes to share pages by merging different virtual
addresses into the same page, if they reference the same physical
address. It thereby increases the memory density, allowing for a
more efficient memory usage. KSM was first implemented in Linux
2.6.32 and is enabled by default [33].

TPS is a proprietary technology of VMware and was developed
with a similar purpose in mind. It also aims at making memory
usage more efficient by sharing identical pages, while having the
hypervisor managing the shared pages. But besides allowing pro-
cesses inside of a VM to share pages, it also enables sharing pages
between VMs. In this case cross-VM attacks using FLUSH+RELOAD
become feasible.

This feature used to be enabled by default, but due to justified
security concerns it is disabled as of VMware ESXi version 6 [55].
Also updates for all 5.x versions disable the feature, if it is enabled
[55]. This however only disables sharing pages between different
VMs, while pages are still shared within VMs [55]. So although
cross-VM FLUSH+RELOAD attacks exploiting TPS are mitigated
this way, attacks between processes running on the same VM still
pose a considerable threat.

Consequently the spy and victim process could share memory
pages under these circumstances. So if the victim accesses a memory
address which is mapped by a shared page, it is saved to the cache.
If the spy tries to access the same address afterwards, it is already
in the cache, as it was just recently accessed by the victim. Since
retrieving data from cache is significantly faster than fetching it
from main memory, the spy can now tell whether the requested
memory address was accessed by the victim, by measuring how
long it took until it was retrieved.

While this allows the spy to find out if a memory address was
accessed, he can’t tell when it was accessed. This is where an in-
struction is needed, that allows to evict specific addresses from the
cache. However most modern Intel processors offer the CLFLUSH
assembly mnemonic [44]. It is available on their Core i3, i5, i7 and

Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine Learning

Xeon models and can be executed from user-level, which allows
it to be run by an unprivileged process. By calling the CLFLUSH
mnemonic with a memory address, the entire cache line which
includes the content referenced by the address is evicted from the
cache. Intel CPUs use a inclusive hierarchy, meaning that the caches
of a certain level contain the content of all caches with a lower level
than theirs. This entails that flushing an address from the LLC, also
flushes it from all other cache levels [10].

This mechanism can be exploited by the spying process, to make
sure that the memory addresses it is spying on are not already in the
cache. This could be implemented by using the algorithm shown in
Algorithm 1.

ALGORITHM 1: FLUSH+RELOAD [10]

Data: 0xABC is a physical address in a page shared by the spy and the
victim. FLUSH_FREQUENCY is the frequency in which the spy
is checking if the victim has accessed 0xABC.
CACHE_ACCESS_THRESHOLD is the maximum amount of
time it takes to get data from cache instead of main memory.

1 while spy is attacking do

2 clflush(0xABC);
3 sleep(FLUSH_FREQUENCY);

4 /* victim may or may not access @xABC while the spy
is sleeping */

5 start_time = get_timestamp();

6 load(0xABC);

7 end_time = get_timestamp();

8 if end time - start_time < CACHE _ACCESS THRESHOLD then

9 ‘ /* victim has accessed OxABC since last clflush */

10 else

11 /* victim most likely has not accessed @xABC since
last clflush */

12 end

13 end

By regularly evicting the relevant memory addresses from the
cache and accessing them after waiting for a given time interval
(lines 2-6), the attacker can then tell if these addresses were accessed
by the victim in the meantime (lines 7-12).

2.2 Out-of-Order Execution

Modern processors use out-of-order execution to maximize the
utilization of all execution units of a CPU core. Rather than process-
ing the instructions in the sequential program order, the CPU can
execute subsequent instructions in parallel or even before preced-
ing instructions. While one execution unit is busy or waiting for
required resources, other execution units can run different instruc-
tions. When an instruction has been completed, it is queued in a
reorder buffer. Once all preceding instructions have been executed,
the instructions are committed and cleared from the reorder buffer.
Eventually the instructions are retired in the specified program
execution order [31, 38].

WAMOS2018, August 2018, Wiesbaden

2.3 Speculative Execution

Speculative execution is widely used among several CPU microar-
chitectures to increase performance. When the control flow of the
application depends on the result of a preceding instruction, the
processor can predict the most likely path of the program and spec-
ulatively execute the next instructions. Depending on the size of
the reorder buffer, speculative execution can run several hundred
instructions ahead [31].

When using out-of-order and speculative execution, the proces-
sor cannot immediately determine the next instruction to execute.
This can for example occur when the control flow depends on an
uncached value in the physical memory, in case of a conditional or
unconditional branch. Because this memory is much slower than
the internal CPU registers, it can take several hundred clock cycles
before the value is fetched. Instead of waiting for the value to ar-
rive, the processor guesses the future path that the program will
follow and speculatively executes instructions along the predicted
path. This optimization method is called branch prediction. When
the value requested from the external memory arrives, the CPU
compares it with its guess. If the predicted path was wrong, the
CPU discards the incorrectly executed instructions. This results
in a performance equal to idling. But if the predicted path was
right, the speculatively executed instructions lead to a significant
performance gain [31].

A second example for speculative execution is the delay that
occurs by translating the virtual memory addresses of a process to
physical memory addresses. In addition to translating the memory
addresses, the CPU also checks if the process has the permission
to access to the requested virtual addresses. While the processor is
waiting for the result of the permission check, it can speculatively
execute the read and the following instructions. If the process has
insufficient permissions, the CPU raises an exception and the results
of the speculatively executed instructions are reverted. But similar
to the aforementioned branch prediction, if the process has access
to the read memory address, the speculatively executed instructions
add to an increased performance [38].

Speculative execution can lead to execution of a program in incor-
rect ways, but the CPU is designed to revert the results of incorrect
speculative executions. Therefore these errors were assumed to be
safe prior to the Meltdown and Spectre attacks. But it turns out that
not all side effects of speculative execution are reverted and some
previously leaked information, e.g. cache contents, can survive the
CPU state revision. The Spectre and Meltdown attacks exploit this
flawed behaviour by recovering this leaked information from the
cache [31].

2.4 Meltdown and Spectre

In [31] Kocher et al. presented two variants of the Spectre at-
tack which exploit the prediction of conditional and unconditional
branches. Meltdown [38] is a related attack which does not rely
on branch prediction but exploits the out-of-order execution of
instructions. When an instruction raises an exception, subsequent
instructions are speculatively executed, before the exception is
handled.

Meltdown relies on a vulnerability specific to Intel and ARM
processors and can be mitigated by the implementation of KAISER

WAMOS2018, August 2018, Wiesbaden

[42] in operating systems. On the contrary Spectre applies to vastly
more CPU architectures and cannot be mitigated as effectively [31].
Because of these limitations we focus our work on the detection of
Spectre attacks.

Spectre variant 1 exploits the prediction of conditional branches.
The simplified example in Listing 1 shows a conditional branch that
receives an unsigned integer x as an input. This code could be part
of a function in a system call or a library where x is controlled by
an untrusted source. In this example array_size is assumed to be
the size of array1 [31].

LISTING 1: Conditional Branch Example [31]

1 if (x < array_size)
2 y = array2[array1[x] * 4096]

To ensure that a malicious x does not access memory outside the
range of array1 the code does a bounds check. This check is crucial
because an out of bounds access could trigger an exception or reveal
sensitive data. In case of normal execution this program flow causes
no security risks. However during speculative execution the read of
array1 could be performed before the result of the bounds check
on x is known. As previously explained, this could happen when
the value of array_size is not in present in the CPU cache and
has to be fetched from external memory. Because the effects of the
speculative read on the cache state are not reverted, an attacker
could use a side channel to recover the content of the accessed
memory location [31].

To perform the attack, an adversary has to run the example
code in such a way that the value of a malicious x is selected, so
that array[x] resolves to a secret byte k somewhere in the victim
processes memory. Further array_size and array2 have to be
evicted from cache, but k is cached. To mistrain the CPU branch
prediction, the adversary runs the code beforehand multiple times
with valid values for x, leading the branch predictor to expect the
if condition to be true [31].

When array_size is evicted from cache, reading the value re-
sults in a cache miss and causes a considerable delay before the
result arrives from external memory. While one execution unit is
busy waiting for the outcome of the branch condition, the CPU
speculatively executes the next instructions. Because the branch
predictor has been mistrained earlier to assume the condition is
likely to be true, the speculative execution logic adds x to the address
of array1 and requests the resulting address (the location of the
secret byte k) from memory. Since k is assumed to be cached during
the attack, the read quickly returns the value of k. Subsequently the
speculative execution calculates the address of array2[k = 4096]
and attempts to read this address from memory. In the meantime
the result of the branch condition may be determined at last and the
processor reverts the register state due to the incorrectly speculated
branch. But the speculative read from array?2 leaves traces in the
cache state, depending on the address of the secret byte k [31].

To restore the value of k, the adversary determines which loca-
tion in array?2 was loaded into the cache. Because the speculative
execution cached array2[k * 40961, the value of the secret byte k
can be exposed using a cache side channel like FLUSH+RELOAD
or PRIME+PROBE [31].

Depoix, Altmeyer

In addition to this example, Spectre variant 1 can exploit many
different instruction patterns. Alternatively to the bounds check, the
conditional branch could be checking a more complex safety result
or an object type. Likewise the speculatively executed code could
be implemented with a larger amount of instructions or could use a
different method to leak the secret byte, e.g. writing a comparison
result to a fixed memory location [31].

Instead of exploiting the speculative execution of conditional
branches, Spectre variant 2 works by poisoning the prediction of
indirect branches. When the address of an indirect branch can-
not be resolved immediately, for example because of a cache miss
that causes a delay, speculative execution will jump to a predicted
address to continue execution. Much like the conditional branch
prediction, the predicted address depends on locations taken by
previous code executions [31].

So to perform an attack in Spectre variant 2, the adversary mis-
trains the branch predictor by jumping to malicious locations in
the attacker process. Although the branch predictor is trained on
the context A of the attacker process, the CPU makes its prediction
in context B on the basis of training data from context A. Hence the
adversary can misdirect speculative execution to jump to locations
that would not be reached during normal program execution. This
implies that arbitrary code mapped in the victims address space
can be executed [31].

Since the speculative execution has side effects, e.g. the traces in
the cache state exploited by Spectre variant 1, it is possible to read
the memory of the victim process. In order to leak the information
via a side channel, the attacker needs to locate a so-called Spectre
gadget. This Spectre gadget is a code fragment, that transfers the
victim’s information through the side channel. This gadget could be
found in a shared library that is mapped into the victim’s process,
without having to search in the victim’s own code [31].

Depending on what state is known and can be controlled by the
attacker, or where the secret information is located, plenty of other
attacks are also feasible. Also for specific gadgets control over a
single register, value on the stack, or memory value is sufficient for
an attack [31].

2.5 Hardware Performance Counters

Most modern microprocessors are equipped with special purpose
registers called Hardware Performance Counters (HPCs). These
are used to count the occurrences of different kind of CPU events,
e.g. clock cycles, cache hits and cache misses for each cache level
or branch misses. Applications can attach to these counters of a
specified event type and read the counters of a given process, thread
or the entire CPU. A HPC is increased each time an event of the
relevant type occurs and usually is reset to zero after its value has
been read.

A common use-case for HPCs is performance profiling, where
detailed information such as caching behaviour can be very valu-
able [3]. But as previous work has shown (see Section 2.7), they can
also provide a useful metric for detecting side-channel attacks by
identifying malicious cache activity. Since HPCs are implemented
into the processors architecture, they can be used with an insignifi-
cant performance overhead, which makes them a good fit for real
time detection. Also they can be accessed from user-level with no

Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine Learning

privileges needed, unless the process or thread which is monitored
runs with higher privileges. Therefore a detection system using
HPCs wouldn’t need to be run by a privileged user, which usually
is favorable.

A widely used interface to Hardware Performance Counters is
the Linux command-line tool perf [13]. This tool allows to collect,
visualize, filter and aggregate data gathered through the HPCs [10].
It contains the sub-command perf-stat which can be used to
monitor CPU events of a specified type selectively system-wide,
for a target process or a target thread.

PAPI (Performance Application Programming Interface) is a li-
brary which provides a unified interface to Hardware Performance
Counters for all CPU models (which support HPCs). While not all
CPUs support the same HPCs, those collecting the same informa-
tion at can be addressed using the same name.

An advantage PAPI has over perf-stat is that it has a more
finely grained resolution. While perf-stat allows for taking multi-
ple samples a second, the smallest interval between two consecutive
samples is 100 ms [10]. On the other hand applications using PAPI
have been used up to a maximum resolution of 3 ps, making it
more than 30000 times faster [9]. Although this difference might
not be as crucial for performance profiling, it can be for detecting
side-channel attacks.

2.6 Neural Networks

Artificial neural networks are machine learning models inspired by
the structure of the human brain. Because they are particularly good
at recognizing patterns in high-dimensional data, neural networks
have proven to be very effective at solving classification tasks [35].

The goal of classification is to specify which category a given
input belongs to. In the case of detecting Spectre attacks the input
is the collected HPC data of different processes and the two output
categories are benign and malicious. Thanks to the neural networks
ability to learn nonlinear relations of the input set, it is possible
to reliably classify complex data without the need for manually
crafted features [21].

Neural networks consist of numerous artificial neurons arranged
in multiple layers. Each neuron has a value and weighted connec-
tions to neurons in the subsequent layer. The simplest network
architecture is a feedforward network. Figure 1 shows a feedfor-
ward network with an input and output layer and one hidden layer.
Each node in the output layer corresponds to a category. To predict
a value, the network takes the inputs from the input layer, feeds it
to the hidden layer and outputs the prediction at the output layer.
The output node with the highest value is the predicted category.
In this example the layers are fully connected, because each neuron
of one layer is connected to every neuron of the previous layer.

To predict a result based on a given input, each neuron sums
the weighted values received from all connected neurons of the
previous layer and passes the result through an activation function.
This activation function squashes the resulting sum to a defined
range, usually between 0 and 1. The sigmoid [24] function is often
used as the activation function in neural networks. In order to learn
the correct mapping between input and output values, the weight
of each neural connection has to be adapted.

WAMOS2018, August 2018, Wiesbaden

Hidden

Input layer Output

layer layer

Inputs
Outputs

Figure 1: Simple feedforward neural network

The learning algorithm used for fitting the weights of the neu-
ral network is called backpropagation. During the training phase,
the network receives an input and predicts an output value. Then
the deviation between the output and the expected value is com-
puted. This error value is propagated backwards from the output
layer to the input layer and the weights of each node are updated
accordingly [21].

Thus neural networks rely on labeled training data to calculate
the error of the prediction, unlike unsupervised machine learning
methods. To achieve good results, a large training set is necessary
[35].

2.7 Related Work

Previous research has already shown the potential HPCs have for
detecting side-channel attacks.

In [10] Chiappetta et al. used HPCs to detect FLUSH+RELOAD
attacks on RSA, AES and ECDSA. They implemented a daemon
constantly monitoring HPCs for the number of total instructions,
total CPU cycles, L2 cache hits, L3 cache misses and L3 cache
total accesses [9]. Using this data they presented and compared
three different methods for detecting ongoing FLUSH+RELOAD
attacks. One approach used was correlation-based, while the other
two were different machine learning techniques, with one of them
being unsupervised and the other being supervised, using a neural
network.

To train the neural network they collected data of the relevant
HPCs for different kind of processes. Besides collecting data of
processes running FLUSH+RELOAD attacks, they also collected
data of processes running common applications like an Apache
web server.

While all techniques were able to detect an attack in most cases,
the machine learning approaches did cause a lot less false positives.
Also the neural network approach did prove to be the most resilient
when the data was noisy. This way it could more accurately de-
tect attackers, even if the attacker tried to additionally perform
unsuspicious operations to obfuscate his intentions.

Bazm et al. built upon the research of Chiappetta et al. [10]
and proposed a similar solution in [6], which specifically tries to
detect cross-VM side-channel attacks in an IaaS environment. They
used the Gaussian anomaly detection method to analyze the data
collected by the HPCs, achieving promising results. Related research
focusing on detecting side-channel attacks in cloud environments
has been done by Zhang et al. in [58] and Inci et al. in [26].

WAMOS2018, August 2018, Wiesbaden

Another interesting application of HPCs for malware detection
was proposed by Alam et al. in [2]. They also used machine learning
techniques to detect the WannaCry ransomware [16] by analyzing
HPC data. They were able to decrease the amount of false positives
by using recurrent neural networks (RNN) with long short-term
memory (LSTM) cells. These kind of networks especially excel at
processing sequential data [20].

3 APPROACH

As explained in Section 2.4, Spectre is only possible through the
combination of two requirements. Firstly the attacker needs to be
able to access data in speculatively executed instructions, which
would not be accessible during correct program execution. Secondly
he needs to be able to leak the accessed data through a side-channel.
Most of the mitigations which have been introduced so far mainly
focus on mitigating Spectre by trying to shut down the first require-
ment. But this has proven to be very hard to do and impossible
without considerable performance hits [49]. Therefore we intro-
duce a solution which prevents Spectre attacks of the variants 1 and
2 by stopping the attacker from leaking the accessed data through
a side-channel. If the attacker is not able to leak the accessed data,
the fact that this data can be accessed during speculative execution
effectively no longer poses a threat.

To do this we built upon the work of Chiappetta et al. in [10],
which was covered in Section 2.7. We utilize the fact that every
cache side-channel attack has observable side effects. To execute
a FLUSH+RELOAD attack for example, the attacker needs to con-
stantly flush cache lines and check if the memory has been accessed
since the last flush. This means that the attacker will have to do
a lot of cache accesses, of which a lot will be cache misses, in a
repetitive pattern. By constantly monitoring the HPCs (Section
2.5) of a process, we therefore can reliably predict if the attacker is
accessing the cache in a malicious way.

As suggested by Chiappetta et al., we use a neural network
trained to find malicious activities in the collected HPC data [10].
The data set we used to train this neural network is explained in
greater detail in the following section.

3.1 Data set

In order to train the supervised learning model, we created a data
set consisting of HPC data collected from various benign processes
and malicious Spectre implementations. These data points are re-
spectively labeled as benign or malicious. Our approach uses per-
formance counters attached to each process instead of accumulated
readings of the entire CPU. This separation allows the model to
classify each process as benign or malicious. A detection system
can then take actions per process based on the predictions of the
neural network. For instance the system can notify the user when
an application is behaving suspiciously or kill a malicious process.

Since only a small number of performance counters can be mon-
itored simultaneously, we selected three processor events based on
the run time characteristics of the Spectre implementations. These
three events are the L3 cache misses (L3_TCM), L3 cache accesses
(L3_TCA) and total number of instructions (TOT_INS).

The L3 cache misses event (L3_TCM) appears to be a good indica-
tor for detecting cache side-channels and hence Spectre attacks. As

Depoix, Altmeyer

explained in Section 2.1, cache side-channels like FLUSH+RELOAD
operate by frequently flushing a specific chunk of memory from
the cache and measuring the access times of a memory read opera-
tion. Therefore the adversary process shows significantly higher
cache miss rates. Flushing the cache with the CLFLUSH instruction
propagates to all cache levels. Thus inspecting the last level cache
(i.e. L3 cache) can identify intentional cache evictions.

In addition to the L3 cache misses, we chose the L3 cache accesses
(L3_TCA) as a reference point for total cache activity. A process with
a higher number of cache accesses presumably has a higher rate of
cache misses. So to prevent a benign process with a large number
of cache misses to be detected as a false positive the neural network
learns a relation between cache misses and total cache accesses.

The total number of instructions (TOT_INS) was selected to ac-
count for the workload the monitored process puts on the CPU in
relation to the number of cache misses. Because a malicious process
typically has a short loop that repeatedly attacks a victim process,
the percentage of cache misses in relation to the total number of
executed instructions is likely to be higher than the rate of a benign
application.

To generate the data set, we considered the following eleven
scenarios:

(1) Wordpress: PHP based CMS with nginx as web server and
MariaDB as database server [18, 19, 50]
(2) Ghost: Node.js based CMS with nginx as web server and
MariaDB as database server [17, 29]
(3) stress -c: one worker process spinning on sqrt() [56]
(4) stress -m: one worker process spinning on malloc()/free()
(56]
(5) stress -i: one worker process spinning on sync() [56]
(6) Chrome: user doing light web browsing [39]
(7) SpectrePoc: implementation of the Spectre variant 1 code
presented in [31]
(8) SpectrePoc no CLFLUSH: SpectrePoc without the usage of
CLFLUSH
(9) spectre-chrome: Spectre implementation in JavaScript [5]
(10) Spectre Check: Spectre vulnerability check for web browsers,
implemented in JavaScript [34]
(11) Spectre Cross-Process: Spectre variant 2 cross-process read
demo [15]

The first two scenarios are examples of server workloads. To get
HPC data of a process under load, the homepages of both content
management systems were repeatedly queried with 50 requests per
second. The next three scenarios cause a high load on the system,
but are classified as benign. The Chrome scenario is a representation
of a casual desktop workload. The remaining five scenarios are
sample implementations of Spectre variant 1 and 2. Because all
common browsers have deployed updated versions with Spectre
and Meltdown mitigations, the support for SharedArrayBuffer
had to be re-enabled in Chrome to be able to execute the JavaScript
based attacks. For each scenario the three aforementioned processor
events were recorded separately for all corresponding processes
for sixty seconds, with a precision of 100 milliseconds. Overall we
collected a total of 15635 data points.

Figure 2 depicts the total L3 cache misses of the ten processes
with the highest cache miss rate. The processes associated with

Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine Learning

scenario 1 are php-fpm7.1_2, php-fpm7.1_3 and php-fpm7.1_4. Re-
spectively node corresponds to scenario 2, stress_m to scenario 4 and
chrome_browsing to scenario 6. The plotted Spectre attacks spectre,
spectre_noflush, spectre_chrome and spectre_check are the recorded
processes for the scenarios 7 to 10. As expected, the plot indicates
that the number of total cache misses is significantly higher for the
Spectre processes. However the node process also shows a high rate
of cache misses.

—— spectre_check
—— spectre

spectre_chrome —— spectre_noflush node stress_m
—— php-fpm7.12 —— phpfpm7.14 —— php-fpm7.1_3 chrome_browsing

<

o

«

L3 cache misses x10°
IS

w

L W‘ W\W\MH\ LU

AT CRICINA T [T L, N TG © UPVRVL M Y L i

0 10 20 30 40 50 60
seconds

Figure 2: L3 Total Cache Misses

Figure 3 shows the total number of L3 cache accesses. The sce-
nario associated with spectre_attack is scenario 11. Similar to Figure
2, the Spectre attacks have a high number of total cache accesses.
Because of the usage of a different cache eviction method, spec-
tre_noflush has an exceptionally high count. The second highest
number has the Node.js process. This indicates that a high memory
activity correlates with a large number of cache misses.

—— spectre_noflush —— node —— spectre_check —— spectre_chrome —— chrome_browsing
— php-fpm7.13 —— php-fpm7.1.4 stress_m —— spectre_attack —— spectre

|
"l| L\ ' i‘ i Uw” v
WWllunnml nmnnnmﬂmmmmImmmlimmﬂnmﬂ”‘leﬂmi "

L3 cache accesses x107

iy

Wﬂm nnmmlmmm ll "W Ll

0 10 20 30 40 50 60
seconds

Figure 3: L3 Total Cache Accesses

Lastly the accumulated number of total instructions are illus-
trated in Figure 4. The stress_c process corresponds to scenario 3,
which creates a high CPU load and causes large numbers of total
instructions executed. But since the stress ¢ has minimal cache

WAMOS2018, August 2018, Wiesbaden

accesses, the neural network can learn to classify similar CPU in-
tensive tasks as benign. As already depicted in Figure 2, both spec-
tre_check and spectre_chrome have a high cache miss rate. Combined
with the large number of total instructions, the relation between
cache misses and executed instructions is significantly higher than
benign processes.

—— spectre_check stress_c
—— spectre

spectre_chrome —— spectre_noflush node
—— php-fpm7.1.4 —— phpfpm7.12 —— phpfpm7.1.3 chrome_browsing

: T

e

o -
® o
|
|

!

|

{

{

t

I
-

i

—=

3

{

{
— T —
] =
i

total instructions x10°

o o
s B
g =

il s

0.0 A Y 1 1 e o (L) M sl b s Juivica
0 10 20 30 40 50 60
seconds

Figure 4: Total Instructions

These results show that the number of L3 total cache misses, L3
total cache accesses and total instructions are good indicators for
identifying cache side-channel attacks.

3.2 Implementation

Our detection system consists of three different services, which
each run in independent processes. An overview of the systems
architecture is illustrated in Figure 5 and will be discussed in this
section.

The role of the ProcessLifecycleService is to track which
processes are started and stopped by the operating system, so that
we can immediately start monitoring these processes for malicious
behaviour. This is done using netlink. netlink is a socket-based
Linux kernel interface used for communication between kernel and
user-space processes [30]. The ProcessLifecycleService opens
a socket to this interface, to be notified when a process is started
or stopped. The PIDs of relevant processes, and information about
whether the detection system should start or stop watching them,
are then forwarded to the next service through a pipe.

The HPCService takes care of watching the HPCs of the pro-
cesses, it receives from the ProcessLifecycleService. This is
done using PAPI, as explained in Section 2.5. PAPI provides a spe-
cific data structure for this, which can be allocated by the HPC-
Service and attached to the HPCs of choice. It then takes care of
writing the current values of the attached HPCs into this data struc-
ture. Every 100 milliseconds the HPCService reads and resets all
attached counters from this data structure. The PIDs of the watched
processes with their corresponding HPC values are then piped to
the next service, after each 100 millisecond interval.

The actual detection of potentially ongoing side-channel attacks
is done by the SCADetectionService. It uses the HPC data it re-
ceives from the HPCService, to predict whether the corresponding

WAMOS2018, August 2018, Wiesbaden

Kernel

information about
starting/stopping
processes

PIDs to
start/stop
] watching

UDP Socket

ProcessLifecycleService PIPE HPCService

Detection System

Depoix, Altmeyer

PIDs with
corresponding
HPCs

PIDs of
malicious
processes

SCADetectionService PIPE OFher_
———— /| Application)

Figure 5: Application architecture

process is behaving maliciously. The prediction is done by a feed-
forward neural network, which was previously trained on the data
set explained in Section 3.1.

This neural network has three input neurons, which correspond
to each of the three collected HPCs. It has one fully connected
hidden layer with 32 neurons and one output neuron. The output
neuron uses a sigmoid activation function, which maps the output
to a value between 0 and 1 [24]. The examined process is considered
malicious if this output is above 0.5 and unharmful otherwise. While
we have tried different network architectures, this one has proven
to give the best results, without inducing overfitting, using our data
set.

The PIDs of malicious processes could then potentially be piped
to another application, which decides what to do with those pro-
cesses. As of now our application only focuses on identifying attacks
and does not dictate how to deal with them, as discussed in Section
5.

4 EXPERIMENTS AND RESULTS

After training our detection systems neural network with the data
set explained in Section 3.1, we collected data to measure its per-
formance, which we will discuss in this section.

We split up 10% of our data set, which we did not use for training,
to be able to validate our trained network with data it hasn’t seen
before. This makes a validation set with a total number of 1564 data
points.

The two metrics we used as main indicators for the performance
of our neural network, are the prediction accuracy and the F-score
[47]. Also we took a close look at the amount of true positives, false
positives, true negatives and false negatives, which are common
metrics for binary classifiers.

Table 1 gives an overview of the exact metrics we collected
during the validation of our neural network. Also Figure 6 illustrates
the ground truth and the predictions of our neural network. It
also shows the population of the classes true positives (TP), false
positives (FP), true negatives (TN) and false negatives (FN).

While still being very good, it is noticeable that the accuracy
for detecting positives is not as good as for detecting negatives.
Meaning that identification of benign processes is actually more
accurate than detection of malicious processes. While this may
seem like a rather undesirable result, looking at Figure 6 should

total number of datapoints 1564
number of positives 317
number of negatives 1247
accuracy (total) 99.23%
accuracy (positives) 97.16%
accuracy (negatives) 99.67%
F-score 0.9716
number of true positives (TP) 308
number of false positives (FP) 4
number of true negatives (TN) 1243
number of false negatives (FN) 9

Table 1: Validation results

e predictions —— ground truth

1.0 1) mEnad aasra 4
|
o
§ 0.6 . « ®
E .
5 0.4+ .
o o
TN :
0.2 1 . . L .
D)
A .
.
Q o ol o| ®
0.0 A e Y S VST SIS PR A
0 200 400 600 800 1000 1200 1400 1600

validation datapoints

Figure 6: Validation results

make clear, that this is not as unfavorable as it might seem at first
sight. Besides the accuracy for detecting positives still being above
97%, which can be considered fairly reliable, it should be kept in
mind, that these metrics are calculated only looking at individual
data points. But Figure 6 illustrates, that false negatives (as well
as false positives) always are individual outliers and never happen

Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine Learning

consecutively. In practice this means that even if a malicious process
can’t be successfully detected with the first set of data we collect
from its HPCs, it should be detected within the next cycle, after 100
milliseconds.

While arguably there still could be some damage done within
these additional 100 milliseconds, the amount of false positives
could prove to be more of a problem in practice. Even though it is
lower than the amount of false negatives, the consequences of a
falsely predicted positive could be more devastating, since it could
lead to that process getting killed. Immediately killing a malicious
process could only be considered as a valid countermeasure, if
our system does not have any false positives at all. The chance of
mistakenly killing any process at any time, would pose to much of a
threat to any kind of system to make our detection system feasible.

To address these problems we discuss some ideas which could
be implemented to decrease the rate of false negatives, as well as
false positives, in Section 6.

In our experimental setup with an Intel Core i7-7820HQ pro-
cessor and 32GB of ram, the detection system has a CPU usage of
4 — 5%, while using a polling rate of 100ms. Section 6 also covers
actions which could be taken to improve our detection systems
performance.

5 DISCUSSION

Looking at the results in Section 4, we believe that real-time detec-
tion of Spectre attacks is definitely a feasible protection method.
Even more so with the implementation of the improvements sug-
gested in Section 6. This poses the question whether preventing
such attacks could be done more effectively using real-time detec-
tion tools, instead of struggling to implement mitigations which
severely hurt performance, although it is known that the underlying
problems only can really be solved by updating the hardware.

One thing which could be holding our detection system back
from being a considerable alternative to the software mitigations,
is that a malicious process has to do something malicious first,
before it can be identified as such. Since we read out a processes
HPCs every 100 milliseconds, it can take up to 100 milliseconds
to identify it as malicious. According to [25] Spectre variant 1 can
readout about 2000 bytes per second on a Intel Haswell Xeon CPU.
So if the attacker would be identified after 100 milliseconds under
these circumstances, he would have already read 200 bytes. Whether
this is enough data for the attacker to do some damage, depends
on the context of the attack. In Section 6 we suggest measures to
make this less of a problem.

Ultimately it is up to the user to decide whether the protection
provided by a detection system is enough, to make it a viable al-
ternative for him. But even if it doesn’t make for an alternative,
it definitely makes for a valuable supplement. A detection system
allows for keeping legacy software safe, even if the publisher no
longer provides updates. Therefore a combination of a detection
system and software mitigations, will be the safest option for the
user.

As mentioned in Section 3.2, our detection system does not
dictate how to handle malicious processes, after they have been
identified. The event is piped to another application, which then
takes care of this event. There are different options on how this

WAMOS2018, August 2018, Wiesbaden

hypothetical application could handle this event. The most obvious
option is to just kill the process. But as mentioned before, this can
lead to a process accidentally being killed, if the detection system
falsely predicts it to be malicious. Therefore the safest option would
be to halt the process and let the user decide, what to do with it.
This would make sure that no processes are killed accidentally,
but in practice this only is feasible on a desktop system. A good
combination of those two options would be to halt the process first
and continue it after a set amount of time, which is long enough
to disrupt a potentially ongoing cache attack. If it is identified as
malicious again, it could then be killed. Also it should be made sure
that the executable which the process was running can’t be started
again, to prevent the attacker from eventually still being able to
execute his attack in multiple 100 millisecond time windows.

6 CONCLUSION AND FUTURE WORK

In this paper we introduced a real-time detection system for Spectre
attacks. It identifies malicious processes by monitoring their Hard-
ware Performance Counters and analyzing this data using a neural
network. With this technique we were able to achieve a detection
accuracy of over 99%, which shows the potential that Hardware
Performance Counters and Machine Learning offer for detecting
side-channel and thereby Spectre attacks.

Although we were able to achieve good results, there is still room
for improvements, which future work could build on.

First of all our detection system was implemented as a proof
of concept and therefore isn’t optimized for performance as much
as it could be. As of now the 100 millisecond HPC polling rate
was chosen, as it has proven to work well without hurting the
performance of the machine it was running on. If the detection
system itself would run more efficiently, a higher HPC polling rate
would become feasible. This would also address a lot of the issues
discussed in Section 5, as a higher polling rate would mean less
time will pass until an attacker is identified.

Also our neural network should be trained on more diverse
implementations of Spectre attacks, specifically ones using different
kinds of side-channel attacks. Since different types of side-channel
attacks have distinctive cache usage patterns, a Spectre attack using
a side-channel which the neural networks has never seen before,
could potential stay undetected. This would reduce the amount of
false negatives and lead to more reliable predictions.

Also a broader data set of benign HPC data could be collected
for training, which could decrease the amount of false positives.
But even if the number of false positives in the validation set is
0, it is impossible to completely rule out that false positives will
ever happen in practice. However only killing a process after it has
proven to be malicious repeatedly, as suggested in Section 5, can
effectively nullify the risk that false positives bring.

If our detection system is also applicable to Meltdown attacks, is
a question which could be picked up by future research. But since
Meltdown also uses cache side-channels to leak the maliciously
collected data in the same way Spectre does, our detection system
should also be able to detect Meltdown attacks. However we haven’t
done any experiments yet, to back this theory up.

As explained in Section 1 Spectre poses a significant threat in a
cross-VM scenario. Therefore doing further research on how well

WAMOS2018, August 2018, Wiesbaden

our detection performs running on a hypervisor, could prove it to be
a great tool for cloud providers to keep their customers safe. In [6]
and [58] Bazm et al. have successfully applied the ideas from [10] to
such a cross-VM scenario. Since we also built our implementation
based on concepts introduced in [10], we are confident that our
system would also be feasible for detecting cross-VM attacks. This
however would have to be confirmed by future research.

REFERENCES

(1]

[2

—

(3]

~
[

—
o

=
o)

[13]

=
A

[16

[17]
[18
[19
[20

[21

[22]

[23

[24

[25]

[26]

Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Rohatgi. 2002.
The EM side-channel (s). In International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 29-45.

Manaar Alam, Sarani Bhattacharya, Debdeep Mukhopadhyay, and Anupam Chat-
topadhyay. 2018. RAPPER: Ransomware Prevention via Performance Counters.
arXiv preprint arXiv:1802.03909 (2018).

Glenn Ammons, Thomas Ball, and James R Larus. 1997. Exploiting hardware
performance counters with flow and context sensitive profiling. ACM Sigplan
Notices 32, 5 (1997), 85-96.

Andrea Arcangeli, Izik Eidus, and Chris Wright. 2009. Increasing memory density
by using KSM. In Proceedings of the linux symposium. Citeseer, 19-28.

ascendr. 2018. spectre-chrome. https://github.com/ascendr/spectre-chrome.
(2018).

Mohammad-Mahdi Bazm, Thibaut Sautereau, Marc Lacoste, Mario Sudholt, and
Jean-Marc Menaud. 2018. Cache-Based Side-Channel Attacks Detection through
Intel Cache Monitoring Technology and Hardware Performance Counters. In
Fog and Mobile Edge Computing (FMEC), 2018 Third International Conference on.
IEEE, 7-12.

Naomi Benger, Joop Van de Pol, Nigel P Smart, and Yuval Yarom. 2014. "Ooh
Aah... Just a Little Bit": A small amount of side channel can go a long way.
In International Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 75-92.

Samira Briongos, Gorka Irazoqui, Pedro Malagén, and Thomas Eisenbarth. 2017.
CacheShield: Protecting Legacy Processes Against Cache Attacks. arXiv preprint
arXiv:1709.01795 (2017).

Marco Chiappetta. 2015. quickhpc. https://github.com/chpmrc/quickhpe. (2015).

Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. 2016. Real time detection of
cache-based side-channel attacks using hardware performance counters. Applied
Soft Computing 49 (2016), 1162-1174.

Jonathan Corbet. 2017. The current state of kernel page-table isolation. (2017).
https://lwn.net/Articles/741878/

Intel Corporation. 2018. Speculative execution side channel mitigations. (May
2018).

Arnaldo Carvalho De Melo. 2010. The new linux ’perf” tools. In Slides from Linux
Kongress, Vol. 18.

John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman,
Simha Sethumadhavan, and Salvatore Stolfo. 2013. On the feasibility of online
malware detection with performance counters. In ACM SIGARCH Computer
Architecture News, Vol. 41. ACM, 559-570.

Theodore Dubois. 2018. Spectre Cross-Process Read Demo. https://github.com/
tbodt/spectre. (2018).

Jesse M Ehrenfeld. 2017. Wannacry, cybersecurity and health information tech-
nology: A time to act. Journal of medical systems 41, 7 (2017), 104.

Ghost Foundation. 2018. ghost. (2018). https://ghost.org

MariaDB Foundation. 2018. MariaDB. (2018). https://mariadb.com

WordPress Foundation. 2018. wordpress. (2018). https://wordpress.org

Felix A Gers, Douglas Eck, and Jirgen Schmidhuber. 2002. Applying LSTM to
time series predictable through time-window approaches. In Neural Nets WIRN
Vietri-01. Springer, 193-200.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch side-channel attacks: Bypassing SMAP and kernel ASLR. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 368-379.

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches.. In USENIX Security
Symposium. 897-912.

Robert Hecht-Nielsen. 1992. Theory of the backpropagation neural network. In
Neural networks for perception. Elsevier, 65-93.

Jann Horn. 2018. Reading privileged memory with a side-channel. (2018). https:
//support.google.com/faqs/answer/7625886

Mehmet Sinan Inci, Berk Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. 2016.
Co-location detection on the cloud. In International Workshop on Constructive
Side-Channel Analysis and Secure Design. Springer, 19-34.

[32

[33

[34

[35

[36

[37

~
fla’

S
ot

[45

[46

[47

(48

o
=

Depoix, Altmeyer

Alex Ionescu. 2018. Windows 17035 Kernel ASLR/VA Isolation In Prac-
tice (like Linux KAISER). (2018). https://borncity.com/win/2018/01/03/
design-flaw-in-intel-cpus-set-operating- systems- at-risk/

Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014.
Wait a minute! A fast, Cross-VM attack on AES. In International Workshop on
Recent Advances in Intrusion Detection. Springer, 299-319.

Joyent. 2018. Node.js. (2018). https://nodejs.org

Michael Kerrisk. 2018. netlink. (2018). http://man7.org/linux/man-pages/man7/
netlink.7.html

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. ArXiv e-prints (Jan.
2018). arXiv:1801.01203

Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis.
In Annual International Cryptology Conference. Springer, 388-397.

KVM. 2015. KSM — KVM,. (2015). https://www.linux-kvm.org/index.php?title=
KSM&oldid=173356

Tencent’s Xuanwu Lab. 2018. Spectre Vulnerabilty Check. (2018). https://xlab.
tencent.com/special/spectre/spectre_check.html

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

Jonathan Levin. 2012. Mac OS X and IOS Internals: To the Apple’s Core. John Wiley
& Sons.

Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices.. In USENIX
Security Symposium. 549-564.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. ArXiv e-prints (Jan. 2018). arXiv:1801.01207

Google LLC. 2018. Google Chrome. (2018). https://google.com/chrome

H. J. Lu. 2018. [PATCH 0/5] x86: CVE-2017-5715, aka Spectre. (2018). https:
//gce.gnu.org/ml/gec-patches/2018-01/msg00422.html

Yangdi Lyu and Prabhat Mishra. 2018. A Survey of Side-Channel Attacks on
Caches and Countermeasures. Journal of Hardware and Systems Security 2, 1
(2018), 33-50.

Clémentine Maurice and Stefan Mangard. 2017. KASLR is Dead: Long Live
KASLR. In Engineering Secure Software and Systems: 9th International Symposium,
ESSoS 2017, Bonn, Germany, July 3-5, 2017, Proceedings, Vol. 10379. Springer, 161.
Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-
termeasures: the case of AES. In Cryptographers’ Track at the RSA Conference.
Springer, 1-20.

Salvador Palanca, Stephen A Fischer, and Subramaniam Maiyuran. 2003.
CLFLUSH micro-architectural implementation method and system. (April 8
2003). US Patent 6,546,462.

Andrew Pardoe. 2018. Windows 17035 Kernel ASLR/VA Isolation In Practice
(like Linux KAISER). (2018). https://blogs.msdn.microsoft.com/vcblog/2018/01/
15/spectre-mitigations-in-msvc/

Mathias Payer. 2016. HexPADS: a platform to detect "stealth" attacks. In In-
ternational Symposium on Engineering Secure Software and Systems. Springer,
138-154.

Yutaka Sasaki et al. 2007. The truth of the F-measure. Teach Tutor mater 1, 5
(2007), 1-5.

Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine Maurice,
Raphael Spreitzer, and Stefan Mangard. 2018. KeyDrown: Eliminating Software-
Based Keystroke Timing Side-Channel Attacks. In Network and Distributed System
Security Symposium 2018.

Nikolay A Simakov, Martins D Innus, Matthew D Jones, Joseph P White, Steven M
Gallo, Robert L DeLeon, and Thomas R Furlani. 2018. Effect of Meltdown
and Spectre Patches on the Performance of HPC Applications. arXiv preprint
arXiv:1801.04329 (2018).

Igor Sysoev. 2018. nginx. (2018). https://nginx.org

Adrian Tang, Simha Sethumadhavan, and Salvatore J Stolfo. 2014. Unsupervised
anomaly-based malware detection using hardware features. In International
Workshop on Recent Advances in Intrusion Detection. Springer, 109-129.
Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. 2003. Cryptanalysis of DES implemented on computers with cache.
In International Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 62-76.

Paul Turner. 2018. Retpoline: a software construct for preventing branch-target-
injection. (2018). https://support.google.com/faqs/answer/7625886

Ganesh Venkitachalam and Michael Cohen. 2009. Transparent page sharing on
commodity operating systems. (March 3 2009). US Patent 7,500,048.

VMWare. 2018. Security considerations and disallowing inter-Virtual Machine
Transparent Page Sharing (2080735). (2018). https://kb.vmware.com/s/article/
2080735

Amos Waterland. 2018. stress. (2018). https://people.seas.harvard.edu/~apw/
stress/

https://github.com/ascendr/spectre-chrome
https://github.com/chpmrc/quickhpc
https://lwn.net/Articles/741878/
https://github.com/tbodt/spectre
https://github.com/tbodt/spectre
https://ghost.org
https://mariadb.com
https://wordpress.org
http://www.deeplearningbook.org
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://borncity.com/win/2018/01/03/design-flaw-in-intel-cpus-set-operating-systems-at-risk/
https://borncity.com/win/2018/01/03/design-flaw-in-intel-cpus-set-operating-systems-at-risk/
https://nodejs.org
http://man7.org/linux/man-pages/man7/netlink.7.html
http://man7.org/linux/man-pages/man7/netlink.7.html
http://arxiv.org/abs/1801.01203
https://www.linux-kvm.org/index.php?title=KSM&oldid=173356
https://www.linux-kvm.org/index.php?title=KSM&oldid=173356
https://xlab.tencent.com/special/spectre/spectre_check.html
https://xlab.tencent.com/special/spectre/spectre_check.html
http://arxiv.org/abs/1801.01207
https://google.com/chrome
https://gcc.gnu.org/ml/gcc-patches/2018-01/msg00422.html
https://gcc.gnu.org/ml/gcc-patches/2018-01/msg00422.html
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://nginx.org
https://support.google.com/faqs/answer/7625886
https://kb.vmware.com/s/article/2080735
https://kb.vmware.com/s/article/2080735
https://people.seas.harvard.edu/~apw/stress/
https://people.seas.harvard.edu/~apw/stress/

Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine Learning

[57

[58

[59

[60

]

]

]

Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack.. In USENIX Security Symposium. 719-
732.

Tianwei Zhang, Yingian Zhang, and Ruby B Lee. 2016. Cloudradar: A real-time
side-channel attack detection system in clouds. In International Symposium on
Research in Attacks, Intrusions, and Defenses. Springer, 118-140.

Yingian Zhang, Ari Juels, Alina Oprea, and Michael K Reiter. 2011. Homealone: Co-
residency detection in the cloud via side-channel analysis. In 2011 IEEE symposium
on security and privacy. IEEE, 313-328.

Yingian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. 2014. Cross-
tenant side-channel attacks in Paa$S clouds. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 990-1003.

WAMOS2018, August 2018, Wiesbaden

	Abstract
	1 Introduction
	2 Background
	2.1 Cache-based side-channel attacks
	2.2 Out-of-Order Execution
	2.3 Speculative Execution
	2.4 Meltdown and Spectre
	2.5 Hardware Performance Counters
	2.6 Neural Networks
	2.7 Related Work

	3 Approach
	3.1 Data set
	3.2 Implementation

	4 Experiments and Results
	5 Discussion
	6 Conclusion and Future Work
	References

