Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine Learning

Presented at FGBS 2018

Jonas Depoix

RheinMain University of Applied Sciences Wiesbaden, Germany jonas.depoix@student.hs-rm.d

Philipp Altmeyer

RheinMain University of Applied Sciences Wiesbaden, Germany philipp.b.altmeyer@student.hs-rm.de

Hochschule **RheinMain** University of Applied Sciences Wiesbaden Rüsselsheim Geisenheim

Agenda

1. Motivation

2. Approach

- Concept
- Selected HPCs
- Data set
- Implementation
- 3. Results
- 4. Demo
- 5. Conclusion
- 6. Future Work

Motivation

- Spectre and Meltdown pose considerable threats
- Spectre software mitigations have drawbacks
 - Mitigations have to be implemented and deployed for every individual application
 - Vendors have to provide updates
 - Users have to keep their applications up to date
 - Considerable performance impact
 - Customers of cloud providers are at great risk
 - An up to date VM can be vulnerable to other VMs running on the same hypervisor

Real-time detection system for Spectre attacks could ...

- ... keep users safe, even when they use vulnerable software
- ... potentially be run with less performance impact, than mitigations
- ... be run on hypervisors by cloud providers, to identify malicious VMs

We wanted to implement a real-time detection system for Spectre attacks, to test if it is a feasible alternative/supplement to software mitigations

Approach

Spectre

- Exploits hardware flaw in speculative execution
- Enables reading of protected memory
- Reverting of speculative execution leaves traces
 - Cache content
- Attacker uses side-channel to transfer protected memory

How does our real-time detection system for Spectre work?

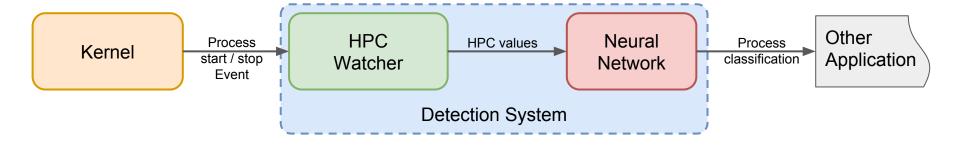
- We mitigate Spectre, by shutting down cache side-channel attacks
- We exploit that cache side-channel attacks have side-effects as well
 - Memory has to be accessed frequently and repeatedly
 - Side-channel attacks induce distinct cache usage patterns

How does our real-time detection system for Spectre work?

- 1. Track cache usage with Hardware Performance Counters
 - Special purpose CPU registers
 - Counts occurrences of certain CPU events
 - E.g. clock cycles, L3 cache hits, L3 cache misses, ...
 - Can be attached to individual threads, processes, or the entire CPU
- 2. Classify processes as malicious or benign using a neural network
 - Good at detecting patterns in data
 - Effective at solving classification tasks

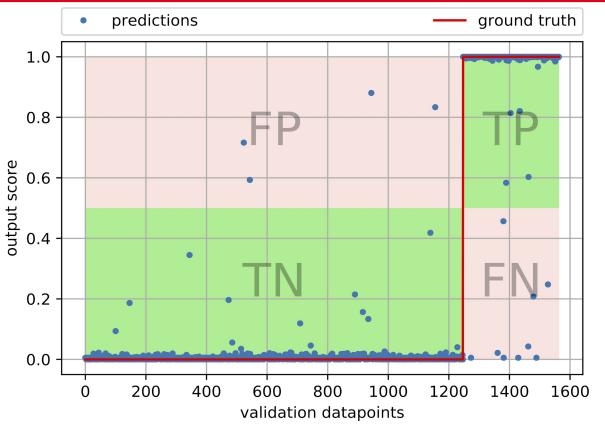
Selected HPCs

- L3 cache misses (L3_TCM)
 - Side-channel attacks cause high cache miss rates
- L3 cache accesses (L3_TCA)
 - Reference for total cache activity
- Total instructions (TOT_INS)
 - Reference for CPU load
 - Malicious process has higher rate of cache misses ⇔ executen instructions



Data set

- 11 scenarios for training and validation
 - Server workloads
 - Wordpress CMS (PHP)
 - Ghost CMS (Node.js)
 - Desktop workloads
 - stress
 - Web browsing
 - Spectre implementations
 - Variants 1 and 2 implementations written in C
 - Variant 1 JavaScript implementation
- Selected HPCs are recorded over 60 seconds in 100 ms intervals


Implementation

Results

Ground truth	
# datapoints	1564
# positives	317
# negatives	1247

Predictions		
Accuracy (total)	99.23%	
Accuracy (positives)	97.16%	
Accuracy (negatives)	99.67%	
F-score	0.9716	
# true positives (TP)	308	
# false positives (FP)	4	
# true negatives (TN)	1243	
# false negatives (FN)	9	

Demo

Conclusion

- We have successfully implemented a real-time detection system for Spectre attacks
 - Accuracy above 99%
 - Detecting side-channel attacks by analyzing HPCs with neural networks shows great potential

Real-time detection is a feasible alternative/supplement to software mitigations

Future Work

- Performance could be improved
- Neural network could be trained on a wider variation of Spectre implementations
- Neural network should be trained on a wider variation of CPU models
- Test if detection system is applicable to Meltdown
- Test if detection system is applicable to cross-VM attacks

Thank you for your attention!

Any questions?

https://github.com/jdepoix/spectre-real-time-detection