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Memory Consumption in Embedded Systems

Development of embedded systems is highly price sensitive
High number of deployed processors: > 100 MCUs per car
High overall yield: 11 million cars (2017: VW)

⇒ Small savings have huge impact: -0.01C/part ≈ 110 k EUR for VW

Quantized RAM Purchase: Microchip ATXMega C3 Series:

Part Flash RAM Price

ATXMEGA64C3 64 kB 4 kB 4.05 EUR
ATXMEGA128C3 128 kB 8 kB 4.11 EUR
ATXMEGA256C3 256 kB 16 kB 5.06 EUR
ATXMEGA384C3 384 kB 32 kB 6.12 EUR
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Living in Private: Normal Threads

Thread#1 Thread#2

Scheduler

Normal threads live on their private stack
Function calls push a new stack frame onto the private stack
Kernel switches arbitrarily between threads and stacks

Real-time schedules are much more restricted
Not all preemptions/resumptions are possible at any point
Stack reusable if two threads are never simultaneously ready
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Living in a Commune: Basic Tasks

Shared Stack

Thread#1

Thread#2
Scheduler

OSEK/AUTOSAR has the concept of basic tasks
. . . live, tightly packed, on the same stack
. . . must have run-to-completion semantic and cannot wait

⇒ Only the top-most basic task can be running (by construction)

Worst-case stack consumption depends on real-time parameters
Preemption thresholds, non-preemptability, priority-ceiling protocol
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Problem Field

Thread#1 Thread#2

Scheduler

Extended Tasks
Shared Stack

Thread#1

Thread#2
Scheduler

Basic Tasks

+ Fully flexible (can wait)
– High static stack usage

– Cannot wait passively
+ Stack-sharing potential

Semi-Extended Tasks live on two Stacks
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Approach

Semi-Extended Task Mechanism
Worst-Case Stack Consumption
Optimize Stack Consumption with SETs
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Semi-Extended Tasks (SET)

Shared Stack SET#2

BT#1

SET#2

BT#3
Scheduler

Stack Switch

SETs switch autonomously to the shared stack
Transition between stacks happens at stack-switch functions
SETs start as Extended Tasks and can become Basic Tasks
Special compiler-generated function prologue
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Technical Detail: Function Prologue

e1()

foo()

local 1

local 2

local 3

local 4

bar()

esp
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e2()

arg 2

arg 1

return address
old ebp

ebp
-0[ebp]

-4[ebp]

-8[ebp]

-12[ebp]

-0[esp]

-4[esp]

-8[esp]

-12[esp]

mov esp,[TOS_BTS]

f
1
(
a
,
b
)

f
1
(
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,
b
)

Basic Task
e1() → foo()

Semi-Extended Task
e2() → f1() → bar()

CPU Register

Shared Stack Private Stack

1 <f1 >:
2 ;; Function − Prologue
3 push ebp ; Save old framepointer
4 mov ebp , esp ; Load new framepointer
5 mov esp , [ TOS_BTS ] ; Switch to shared stack
6 sub esp , 16 ; Allocate local variables
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Approach

Semi-Extended Task Mechanism
Worst-Case Stack Consumption
Optimize Stack Consumption with SETs
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Worst-Case Stack Consumption (WCSC)
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WCSC analysis must consider different constraints

Intra-Thread Callgraphs

Recursion

Preemption Constraints

Global Control Flow

SET Stack Switches
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Worst-Case Stack Consumption (WCSC)

Current WCSC Analyses for Shared Stack are Coarse-Grained
Analyse each Task in Isolation
Combine Stack Consumption According to Preemption Rules

We suggest a combined Approach with IPET/ILP Solver
Model WCSC analysis as a maximum-flow problem
Search for costliest {preemption chain, function stacking}
Allows for fine-grained preemption constraints:

forbid(T1 −→ T2) forbid(T1[S] −→ T2)

Fine-Grained Preemption Constraints
Extract Constraints from Global Control-Flow Graph
Flow-Sensitive Static Analysis of Application and RTOS
Presented in previous work: LCTES’15, TECS’17
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Approach

Semi-Extended Task Mechanism
Worst-Case Stack Consumption
Optimize Stack Consumption with SETs
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Where to Switch Stacks?

Select stack-switch function to minimize the WCSC.
Parents of blocking system calls are forbidden

Children of stack-switch functions are forbidden
Possibilities: extended, basic, or semi-extended tasks

T#1 T#2

f() g() j() k()

wait() x() l() q()

Stack Switch

On Shared
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T#1 T#2

f() g() j() k()

wait() x() l() q()

Stack Switch

On Shared

Minimizing the WCSC: Two-level Optimization
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Results

Synthetic Benchmark Scenario
Run-Time of the Optimization
Stack-space Savings
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Synthetic Benchmark Scenarios

Evaluate the stack-optimization with > 14000 systems
#Threads: 20 – 50

#IRQs: 1 – 20

#Waiting Threads: 0 – 15

#Functions: 100 – 1000

#Priority-Ceiling Resources: 1 – 10

Integration into Whole-System Generator
dOSEK: Python framework for system analysis and kernel generation

LLVM: Extract sizes of stack frames and stack-switch prologue

Gurobi: state-of-the-art ILP solver
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Run-Time of Optimization
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Stack-Usage Factors
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Conclusion
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Conclusion

Semi-Extended Tasks
SETs switch to Shared Stack if possible
Switching is efficient and does not involve the RTOS

Fine-Grained Worst-Case Stack Consumption Analysis
Real-Time Properties (Priorities, Preemption Thresholds)
Flow-Sensitive Preemption Constraints
Supports Semi-Extended Tasks

Stack-Space Saving compared to pure BTS systems
7 percent on average, up to 52 percent
80 percent of all systems used less stack space
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Genetic Algorithm as a Higher-Level Optimization

Genetic algorithm to find a good configuration
Encode configuration as bit-vector
Bitmasks verify configuration
Configurations can be breed, mixed, and mutated

g() x() l() T#2 j() k() q()

1 0 0 0 0 1 0

Genetic Algorithm with Initial Population
1. Generate new bit-vectors by mutation and cross-over
2. Calculate fitness (WCSC) with IPET/ILP solver
3. Select top 20 switch-configurations
4. Goto 1, until satisfied (60 seconds of no progress)

LUH SET – 1 – 1

T#1 T#2

f() g() j() k()

wait() x() l() q()

Stack Switch

On Shared
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