17 { § Leibniz
i 0 Z Universitdt
toog: 4 | Hannover

Semi-Extended Tasks:
Efficient Stack Sharing Among Blocking Threads

Christian Dietrich, Daniel Lohmann

Leibniz Universitat Hannover

September 2018 supported by DFG

® Development of embedded systems is highly price sensitive

= High number of deployed processors: > 100 MCUs per car
= High overall yield: 11 million cars (2017: VW)
= Small savings have huge impact: -0.01€/part ~ 110 k EUR for VW

LUH SET 2-19

® Development of embedded systems is highly price sensitive
= High number of deployed processors: > 100 MCUs per car

= High overall yield:

11 million cars (2017: VW)

= Small savings have huge impact: -0.01€/part ~ 110 k EUR for VW

® Quantized RAM Purchase: Microchip ATXMega C3 Series:

LUH

SET

Part Flash RAM Price
ATXMEGA64C3 64 kB 4kB 4.05EUR
ATXMEGA128C3 128 kB 8kB 4.11 EUR
ATXMEGA256C3 256kB 16kB 5.06 EUR
ATXMEGA384C3 384kB 32kB 6.12EUR

Memory Consumption in Embedded Systems

. aZ B S
¥ gmpmm 1 °

® Developmen ‘ ce sensitive
= High numbe gt JB& s per car
= High overal kg \
= Small savin

f—:
. —
f—
o
i,

10 k EUR for VW

® Quantized R *_$% SN X C3 Series:

A Price

\WILUM T eUUY 1eU no ono -0 EUR

ATXMEGA256C3 256kB 16kB 5.06 EUR
ATXMEGA384C3 384kB 32kB 6.12 EUR

LUH SET 2-19

Living in Private: Normal Threads

Thread#1 Thread#2
l Scheduler l
()

B Normal threads live on their private stack

= Function calls push a new stack frame onto the private stack
m Kernel switches arbitrarily between threads and stacks

LUH SET — Stack Memory as a Shared Ressource 3-19

Living in Private: Normal Threads e

094 | Hannover

Thread#1 Thread#2
i Scheduler l
Q)

Normal threads live on their private stack

= Function calls push a new stack frame onto the private stack
m Kernel switches arbitrarily between threads and stacks

Real-time schedules are much more restricted

= Not all preemptions/resumptions are possible at any point
m Stack reusable if two threads are never simultaneously ready

LUH SET — Stack Memory as a Shared Ressource 3-19

Shared Stack

Living in a Commune: Basic Tasks

Scheduler

i

—©)

B OSEK/AUTOSAR has the concept of basic tasks

= ... live, tightly packed, on the same stack
= ... must have run-to-completion semantic and cannot wait

= Only the top-most basic

task can be running (by construction)

LUH SET — Stack Memory as a Shared Ressource

Shared Stack

Living in a Commune: Basic Tasks

Scheduler

i

—©)

B OSEK/AUTOSAR has the concept of basic tasks

= .. .live, tightly packed, on the same stack
= ... must have run-to-completion semantic and cannot wait

= Only the top-most basic

task can be running (by construction)

B Worst-case stack consumption depends on real-time parameters
= Preemption thresholds, non-preemptability, priority-ceiling protocol

LUH SET — Stack Memory as a Shared Ressource 4-19

Problem Field

Extended Tasks

Thread#1 Thread#2

Scheduler i

+ Fully flexible (can wait)
— High static stack usage

LUH SET — Stack Memory as a Shared Ressource

Basic Tasks
Shared Stack

l Scheduler

— Cannot wait passively
+ Stack-sharing potential

Problem Field

Extended Tasks

Thread#1 Thread#2

Scheduler i

+ Fully flexible (can wait)
— High static stack usage

Basic Tasks
Shared Stack

l Scheduler

— Cannot wait passively
+ Stack-sharing potential

Semi-Extended Tasks live on two Stacks

LUH SET — Stack Memory as a Shared Ressource

Approach

® Semi-Extended Task Mechanism
m Worst-Case Stack Consumption
m Optimize Stack Consumption with SETs

LUH SET — Stack Memory as a Shared Ressource

Approach

m Semi-Extended Task Mechanism
m Worst-Case Stack Consumption
m Optimize Stack Consumption with SETs

LUH SET — Stack Memory as a Shared Ressource

Semi-Extended Tasks (SET)

Shared Stack SET#2
-BT#1 s
taCkS)
SET#2 en
Scheduler

—{BT#3[| /)

&

SETs switch autonomously to the shared stack

= Transition between stacks happens at stack-switch functions
m SETs start as Extended Tasks and can become Basic Tasks
m Special compiler-generated function prologue

LUH SET — Stack Memory as a Shared Ressource

oo AW =

Technical Detail: Function Prologue

Shared Stack

TOS_BTS

<f1>:

LUH

;3 Function — Prologue
push ebp ;
mov ebp, esp ;
mov esp, [TOS_BTS] ;
sub esp, 16 ;
SET — Stack Memory as a Shared Ressource

Private Stack

el() — foo()

. Semi-Extended Task
e2() — f1() — bar()

Save old framepointer
Load new framepointer
Switch to shared stack
Allocate local variables

Approach

m Semi-Extended Task Mechanism
m Worst-Case Stack Consumption
m Optimize Stack Consumption with SETs

LUH SET — Stack Memory as a Shared Ressource

Worst-Case Stack Consumption (WCSC)

BTS=120
. e
[f10:20] | S(:50] S()
e2()
e2():10 S()

T2

- S():50

m WCSC analysis must consider different constraints

= Intra-Thread Callgraphs

LUH SET — Stack Memory as a Shared Ressource

10-19

Worst-Case Stack Consumption (WCSC)

BTS=130

TH1

[f10:20] | S(:50]

m WCSC analysis must consider different constraints

m Intra-Thread Callgraphs

= Recursion

LUH SET — Stack Memory as a Shared Ressource

10-19

Worst-Case Stack Consumption (WCSC)

BTS=70

.

<2 C- S():50

m WCSC analysis must consider different constraints

m Intra-Thread Callgraphs
= Recursion

= Preemption Constraints

LUH SET — Stack Memory as a Shared Ressource 10-19

Worst-Case Stack Consumption (WCSC)

BTS=80 T1

activate

TH1

()

&

Y/jﬁ():zo\ 1S():50 |

/‘ e2():10

T2
‘ exit
<2 C- S():50

m WCSC analysis must consider different constraints

wakeup

%
>

= Intra-Thread Callgraphs = Global Control Flow
= Recursion

= Preemption Constraints

LUH SET — Stack Memory as a Shared Ressource 10-19

Worst-Case Stack Consumption (WCSC)

BTS=60 T1

activate

TH1

() .
/ f):20] [s(:50 8()

€ vakewp L e2:2
e2():10
/. .

T2)
- S():50 L

m WCSC analysis must consider different constraints

= Intra-Thread Callgraphs = Global Control Flow
= Recursion m SET Stack Switches
m Preemption Constraints

LUH SET — Stack Memory as a Shared Ressource 10-19

Worst-Case Stack Consumption (WCSC)

B Current WCSC Analyses for Shared Stack are Coarse-Grained
= Analyse each Task in Isolation
= Combine Stack Consumption According to Preemption Rules

LUH SET — Stack Memory as a Shared Ressource 11-19

Worst-Case Stack Consumption (WCSC)

B Current WCSC Analyses for Shared Stack are Coarse-Grained
= Analyse each Task in Isolation
= Combine Stack Consumption According to Preemption Rules

B We suggest a combined Approach with IPET/ILP Solver
= Model WCSC analysis as a maximum-flow problem
m Search for costliest {preemption chain, function stacking}
= Allows for fine-grained preemption constraints:

forbid(T1 — T2) forbid(T1[S] — T2)

LUH SET — Stack Memory as a Shared Ressource 11-19

Worst-Case Stack Consumption (WCSC)

Current WCSC Analyses for Shared Stack are Coarse-Grained
= Analyse each Task in Isolation
= Combine Stack Consumption According to Preemption Rules

We suggest a combined Approach with IPET/ILP Solver

= Model WCSC analysis as a maximum-flow problem
m Search for costliest {preemption chain, function stacking}
= Allows for fine-grained preemption constraints:

forbid(T1 — T2) forbid(T1[S] — T2)

Fine-Grained Preemption Constraints

m Extract Constraints from Global Control-Flow Graph

= Flow-Sensitive Static Analysis of Application and RTOS
= Presented in previous work: LCTES’15, TECS'17

LUH SET — Stack Memory as a Shared Ressource 11-19

Approach

m Semi-Extended Task Mechanism
m Worst-Case Stack Consumption
m Optimize Stack Consumption with SETs

LUH SET — Stack Memory as a Shared Ressource

12-19

Where to Switch Stacks?

B Select stack-switch function to minimize the WCSC.
m Parents of blocking system calls are forbidden

T#1
(f0] 90| [50] [x0] [Stack Switch |
N/ /

wait0 | [x0] [10] [a0]

LUH SET — Stack Memory as a Shared Ressource 13-19

Where to Switch Stacks?

m Select stack-switch function to minimize the WCSC.

= Parents of blocking system calls are forbidden
= Children of stack-switch functions are forbidden

T#1 T#2
(f0] [90] \j<>T [« [Stack Switch|
N{ 4

[waico] [x0] [0] [q0]

LUH SET — Stack Memory as a Shared Ressource 13-19

Where to Switch Stacks?

094 | Hannover

m Select stack-switch function to minimize the WCSC.

= Parents of blocking system calls are forbidden
= Children of stack-switch functions are forbidden
m Possibilities: extended, basic, or semi-extended tasks

T#1

50 | 0] [Stack SwitchT

ANV T

LUH SET — Stack Memory as a Shared Ressource 13-19

Where to Switch Stacks?

m Select stack-switch function to minimize the WCSC.

m Parents of blocking system calls are forbidden
= Children of stack-switch functions are forbidden
= Possibilities: extended, basic, or semi-extended tasks

] o ol [aof]

Minimizing the WCSC: Two-level Optimization

LUH SET — Stack Memory as a Shared Ressource 13-19

Results

B Synthetic Benchmark Scenario
® Run-Time of the Optimization
m Stack-space Savings

LUH SET — Stack Memory as a Shared Ressource

14-19

Synthetic Benchmark Scenarios

Evaluate the stack-optimization with > 14000 systems
#Threads: 20 — 50

#IRQs: 1 -20
#Waiting Threads: 0 — 15

= #Functions: 100 — 1000

= #Priority-Ceiling Resources: 1 — 10

Integration into Whole-System Generator

= dOSEK: Python framework for system analysis and kernel generation
= LLVM: Extract sizes of stack frames and stack-switch prologue

= Gurobi: state-of-the-art ILP solver

LUH SET — Stack Memory as a Shared Ressource 15-19

Run-Time of Optimization

S 150 -

100

#IRQs #Threads

Run Time (in s)

50

12345678910 20 25 30 35 40 45 50

T
200 B Genetic Algorithm
[GCFG Calculation

#Functions 100 #Waiting

Run Time (in s)

W Genetic Algorithm
[GCFG Calculation

123456782910 0 5 10 15

LUH SET — Stack Memory as a Shared Ressource 16-19

it || Leibniz

Stack-Usage Factors H B

1 1 T T T
—e— BTS system
—e— SET system
0.95 | e s B K 1
AT
- -)
09 7T e 09 |
#IRQs =l #Threads
085F A 1 o0s8s| 1
08| f 4 08l I S — 1
' —e— BTS system ’ _e—% e
—e— SET system e
o5l 1 o5l 1]
1 23 456 7 8 9 10 20 25 30 35 40 45 50
1 — 0 5 10 15
— e BTS 1 T T T T
e SET —o— BTS system /.,Jor""'.
0.95 + - —o— SET system ,/./0/: . °
e o
0.8 |- /./t Y Pl -
0.9 P S S —— *——q | .//,,,n
#Functions L4 T]| #Waiting
0.85 - - o 0.6 - 4 0.95 - L 21
L 4
T e e e | 0ol A= 0.071
0.8 o .
04 S I N
/ e | | | L
075 Il Il Il Il Il Il Il Il Il Il
1 2 3 45 6 7 8 9 10 ‘ 11 12 13 14 15

LUH SET — Stack Memory as a Shared Ressource 17-19

Conclusion

LUH SET — Stack Memory as a Shared Ressource 18-19

Conclusion

Semi-Extended Tasks

m SETs switch to Shared Stack if possible
= Switching is efficient and does not involve the RTOS

Fine-Grained Worst-Case Stack Consumption Analysis

= Real-Time Properties (Priorities, Preemption Thresholds)
= Flow-Sensitive Preemption Constraints
= Supports Semi-Extended Tasks

Stack-Space Saving compared to pure BTS systems

m 7 percent on average, up to 52 percent
= 80 percent of all systems used less stack space

LUH SET — Stack Memory as a Shared Ressource

19=419

Genetic Algorithm as a Higher-Level Optimization

T#l

® Genetic algorithm to find a good configuration - o -
m Encode configuration as bit-vector jl
= Bitmasks verify configuration
= Configurations can be breed, mixed, and mutated

wat

90 | xO [10 |T#2| 0 | kO | a0
0 0 0 0 0

m Genetic Algorithm with Initial Population

1. Generate new bit-vectors by mutation and cross-over
2. Calculate fitness (WCSC) with IPET/ILP solver

3. Select top 20 switch-configurations

4. Goto 1, until satisfied (60 seconds of no progress)

LUH SET - 1=

	Memory Consumption in Embedded Systems
	Memory Consumption in Embedded Systems
	Memory Consumption in Embedded Systems
	Stack Memory as a Shared Ressource
	Living in Private: Normal Threads
	Living in Private: Normal Threads
	Living in a Commune: Basic Tasks
	Living in a Commune: Basic Tasks
	Problem Field
	Problem Field
	Semi-Extended Tasks (SET)
	Technical Detail: Function Prologue
	Worst-Case Stack Consumption (WCSC)
	Worst-Case Stack Consumption (WCSC)
	Worst-Case Stack Consumption (WCSC)
	Worst-Case Stack Consumption (WCSC)
	Worst-Case Stack Consumption (WCSC)
	Worst-Case Stack Consumption (WCSC)
	Worst-Case Stack Consumption (WCSC)
	Worst-Case Stack Consumption (WCSC)
	Where to Switch Stacks?
	Where to Switch Stacks?
	Where to Switch Stacks?
	Where to Switch Stacks?
	Synthetic Benchmark Scenarios
	Run-Time of Optimization
	Stack-Usage Factors
	Conclusion

	Appendix
	Genetic Algorithm as a Higher-Level Optimization

