
Semi-Extended Tasks:
Efficient Stack Sharing Among Blocking Threads

Christian Dietrich, Daniel Lohmann

Leibniz Universität Hannover

September 2018 supported by

Memory Consumption in Embedded Systems

Development of embedded systems is highly price sensitive
High number of deployed processors: > 100 MCUs per car
High overall yield: 11 million cars (2017: VW)

⇒ Small savings have huge impact: -0.01C/part ≈ 110 k EUR for VW

Quantized RAM Purchase: Microchip ATXMega C3 Series:

Part Flash RAM Price

ATXMEGA64C3 64 kB 4 kB 4.05 EUR
ATXMEGA128C3 128 kB 8 kB 4.11 EUR
ATXMEGA256C3 256 kB 16 kB 5.06 EUR
ATXMEGA384C3 384 kB 32 kB 6.12 EUR

LUH SET 2 – 19

Memory Consumption in Embedded Systems

Development of embedded systems is highly price sensitive
High number of deployed processors: > 100 MCUs per car
High overall yield: 11 million cars (2017: VW)

⇒ Small savings have huge impact: -0.01C/part ≈ 110 k EUR for VW

Quantized RAM Purchase: Microchip ATXMega C3 Series:

Part Flash RAM Price

ATXMEGA64C3 64 kB 4 kB 4.05 EUR
ATXMEGA128C3 128 kB 8 kB 4.11 EUR
ATXMEGA256C3 256 kB 16 kB 5.06 EUR
ATXMEGA384C3 384 kB 32 kB 6.12 EUR

LUH SET 2 – 19

Memory Consumption in Embedded Systems

Development of embedded systems is highly price sensitive
High number of deployed processors: > 100 MCUs per car
High overall yield: 11 million cars (2017: VW)

⇒ Small savings have huge impact: -0.01C/part ≈ 110 k EUR for VW

Quantized RAM Purchase: Microchip ATXMega C3 Series:

Part Flash RAM Price

ATXMEGA64C3 64 kB 4 kB 4.05 EUR
ATXMEGA128C3 128 kB 8 kB 4.11 EUR
ATXMEGA256C3 256 kB 16 kB 5.06 EUR
ATXMEGA384C3 384 kB 32 kB 6.12 EUR

LUH SET 2 – 19

Living in Private: Normal Threads

Thread#1 Thread#2

Scheduler

Normal threads live on their private stack
Function calls push a new stack frame onto the private stack
Kernel switches arbitrarily between threads and stacks

Real-time schedules are much more restricted
Not all preemptions/resumptions are possible at any point
Stack reusable if two threads are never simultaneously ready

LUH SET – Stack Memory as a Shared Ressource 3 – 19

Living in Private: Normal Threads

Thread#1 Thread#2

Scheduler

Normal threads live on their private stack
Function calls push a new stack frame onto the private stack
Kernel switches arbitrarily between threads and stacks

Real-time schedules are much more restricted
Not all preemptions/resumptions are possible at any point
Stack reusable if two threads are never simultaneously ready

LUH SET – Stack Memory as a Shared Ressource 3 – 19

Living in a Commune: Basic Tasks

Shared Stack

Thread#1

Thread#2
Scheduler

OSEK/AUTOSAR has the concept of basic tasks
. . . live, tightly packed, on the same stack
. . . must have run-to-completion semantic and cannot wait

⇒ Only the top-most basic task can be running (by construction)

Worst-case stack consumption depends on real-time parameters
Preemption thresholds, non-preemptability, priority-ceiling protocol

LUH SET – Stack Memory as a Shared Ressource 4 – 19

Living in a Commune: Basic Tasks

Shared Stack

Thread#1

Thread#2
Scheduler

OSEK/AUTOSAR has the concept of basic tasks
. . . live, tightly packed, on the same stack
. . . must have run-to-completion semantic and cannot wait

⇒ Only the top-most basic task can be running (by construction)

Worst-case stack consumption depends on real-time parameters
Preemption thresholds, non-preemptability, priority-ceiling protocol

LUH SET – Stack Memory as a Shared Ressource 4 – 19

Problem Field

Thread#1 Thread#2

Scheduler

Extended Tasks
Shared Stack

Thread#1

Thread#2
Scheduler

Basic Tasks

+ Fully flexible (can wait)
– High static stack usage

– Cannot wait passively
+ Stack-sharing potential

Semi-Extended Tasks live on two Stacks

LUH SET – Stack Memory as a Shared Ressource 5 – 19

Problem Field

Thread#1 Thread#2

Scheduler

Extended Tasks
Shared Stack

Thread#1

Thread#2
Scheduler

Basic Tasks

+ Fully flexible (can wait)
– High static stack usage

– Cannot wait passively
+ Stack-sharing potential

Semi-Extended Tasks live on two Stacks

LUH SET – Stack Memory as a Shared Ressource 5 – 19

Approach

Semi-Extended Task Mechanism
Worst-Case Stack Consumption
Optimize Stack Consumption with SETs

LUH SET – Stack Memory as a Shared Ressource 6 – 19

Approach

Semi-Extended Task Mechanism
Worst-Case Stack Consumption
Optimize Stack Consumption with SETs

LUH SET – Stack Memory as a Shared Ressource 6 – 19

Semi-Extended Tasks (SET)

Shared Stack SET#2

BT#1

SET#2

BT#3
Scheduler

Stack Switch

SETs switch autonomously to the shared stack
Transition between stacks happens at stack-switch functions
SETs start as Extended Tasks and can become Basic Tasks
Special compiler-generated function prologue

LUH SET – Stack Memory as a Shared Ressource 7 – 19

Technical Detail: Function Prologue

e1()

foo()

local 1

local 2

local 3

local 4

bar()

esp

T
O
S
_
B
T
S

e2()

arg 2

arg 1

return address
old ebp

ebp
-0[ebp]

-4[ebp]

-8[ebp]

-12[ebp]

-0[esp]

-4[esp]

-8[esp]

-12[esp]

mov esp,[TOS_BTS]

f
1
(
a
,
b
)

f
1
(
a
,
b
)

Basic Task
e1() → foo()

Semi-Extended Task
e2() → f1() → bar()

CPU Register

Shared Stack Private Stack

1 <f1 >:
2 ;; Function − Prologue
3 push ebp ; Save old framepointer
4 mov ebp , esp ; Load new framepointer
5 mov esp , [TOS_BTS] ; Switch to shared stack
6 sub esp , 16 ; Allocate local variables

LUH SET – Stack Memory as a Shared Ressource 8 – 19

Approach

Semi-Extended Task Mechanism
Worst-Case Stack Consumption
Optimize Stack Consumption with SETs

LUH SET – Stack Memory as a Shared Ressource 9 – 19

Worst-Case Stack Consumption (WCSC)

T1

T2

e1():10

f1():20 S():50

e2():10

f2():20 S():50

T1 T2

e1:1

f1

e1:2

S

e1:3
exit

e2:1

f2

e2:2

S

activate

wa
it

wakeup

ex
it

BTS=120

e1()

S()

e2()

S()

WCSC analysis must consider different constraints

Intra-Thread Callgraphs

Recursion

Preemption Constraints

Global Control Flow

SET Stack Switches

LUH SET – Stack Memory as a Shared Ressource 10 – 19

Worst-Case Stack Consumption (WCSC)

T1

T2

e1():10

f1():20 S():50

e2():10

f2():20 S():50≤ 2

T1 T2

e1:1

f1

e1:2

S

e1:3
exit

e2:1

f2

e2:2

S

activate

wa
it

wakeup

ex
it

BTS=130

e1()

S()

e2()

f2()

f2()

f2()

WCSC analysis must consider different constraints

Intra-Thread Callgraphs

Recursion

Preemption Constraints

Global Control Flow

SET Stack Switches

LUH SET – Stack Memory as a Shared Ressource 10 – 19

Worst-Case Stack Consumption (WCSC)

T1

T2

e1():10

f1():20 S():50

e2():10

f2():20 S():50≤ 2

x

T1 T2

e1:1

f1

e1:2

S

e1:3
exit

e2:1

f2

e2:2

S

activate

wa
it

wakeup

ex
it

BTS=70

e2()

f2()

f2()

f2()

WCSC analysis must consider different constraints

Intra-Thread Callgraphs

Recursion

Preemption Constraints

Global Control Flow

SET Stack Switches

LUH SET – Stack Memory as a Shared Ressource 10 – 19

Worst-Case Stack Consumption (WCSC)

T1

T2

e1():10

f1():20 S():50

e2():10

f2():20 S():50≤ 2

x
x

T1 T2

e1:1

f1

e1:2

S

e1:3
exit

e2:1

f2

e2:2

S

activate

wa
it

wakeup

ex
it

BTS=80

e1()

e2()

f2()

f2()

f2()

WCSC analysis must consider different constraints

Intra-Thread Callgraphs

Recursion

Preemption Constraints

Global Control Flow

SET Stack Switches

LUH SET – Stack Memory as a Shared Ressource 10 – 19

Worst-Case Stack Consumption (WCSC)

T1

T2

e1():10

f1():20 S():50

e2():10

f2():20 S():50

x
x

T1 T2

e1:1

f1

e1:2

S

e1:3
exit

e2:1

f2

e2:2

S

activate

wa
it

wakeup

ex
it

BTS=60

e1()

S()

WCSC analysis must consider different constraints

Intra-Thread Callgraphs

Recursion

Preemption Constraints

Global Control Flow

SET Stack Switches

LUH SET – Stack Memory as a Shared Ressource 10 – 19

Worst-Case Stack Consumption (WCSC)

Current WCSC Analyses for Shared Stack are Coarse-Grained
Analyse each Task in Isolation
Combine Stack Consumption According to Preemption Rules

We suggest a combined Approach with IPET/ILP Solver
Model WCSC analysis as a maximum-flow problem
Search for costliest {preemption chain, function stacking}
Allows for fine-grained preemption constraints:

forbid(T1 −→ T2) forbid(T1[S] −→ T2)

Fine-Grained Preemption Constraints
Extract Constraints from Global Control-Flow Graph
Flow-Sensitive Static Analysis of Application and RTOS
Presented in previous work: LCTES’15, TECS’17

LUH SET – Stack Memory as a Shared Ressource 11 – 19

Worst-Case Stack Consumption (WCSC)

Current WCSC Analyses for Shared Stack are Coarse-Grained
Analyse each Task in Isolation
Combine Stack Consumption According to Preemption Rules

We suggest a combined Approach with IPET/ILP Solver
Model WCSC analysis as a maximum-flow problem
Search for costliest {preemption chain, function stacking}
Allows for fine-grained preemption constraints:

forbid(T1 −→ T2) forbid(T1[S] −→ T2)

Fine-Grained Preemption Constraints
Extract Constraints from Global Control-Flow Graph
Flow-Sensitive Static Analysis of Application and RTOS
Presented in previous work: LCTES’15, TECS’17

LUH SET – Stack Memory as a Shared Ressource 11 – 19

Worst-Case Stack Consumption (WCSC)

Current WCSC Analyses for Shared Stack are Coarse-Grained
Analyse each Task in Isolation
Combine Stack Consumption According to Preemption Rules

We suggest a combined Approach with IPET/ILP Solver
Model WCSC analysis as a maximum-flow problem
Search for costliest {preemption chain, function stacking}
Allows for fine-grained preemption constraints:

forbid(T1 −→ T2) forbid(T1[S] −→ T2)

Fine-Grained Preemption Constraints
Extract Constraints from Global Control-Flow Graph
Flow-Sensitive Static Analysis of Application and RTOS
Presented in previous work: LCTES’15, TECS’17

LUH SET – Stack Memory as a Shared Ressource 11 – 19

Approach

Semi-Extended Task Mechanism
Worst-Case Stack Consumption
Optimize Stack Consumption with SETs

LUH SET – Stack Memory as a Shared Ressource 12 – 19

Where to Switch Stacks?

Select stack-switch function to minimize the WCSC.
Parents of blocking system calls are forbidden

Children of stack-switch functions are forbidden
Possibilities: extended, basic, or semi-extended tasks

T#1 T#2

f() g() j() k()

wait() x() l() q()

Stack Switch

On Shared

LUH SET – Stack Memory as a Shared Ressource 13 – 19

Where to Switch Stacks?

Select stack-switch function to minimize the WCSC.
Parents of blocking system calls are forbidden
Children of stack-switch functions are forbidden

Possibilities: extended, basic, or semi-extended tasks

T#1 T#2

f() g() j() k()

wait() x() l() q()

Stack Switch

On Shared

LUH SET – Stack Memory as a Shared Ressource 13 – 19

Where to Switch Stacks?

Select stack-switch function to minimize the WCSC.
Parents of blocking system calls are forbidden
Children of stack-switch functions are forbidden
Possibilities: extended, basic, or semi-extended tasks

T#1 T#2

f() g() j() k()

wait() x() l() q()

Stack Switch

On Shared

LUH SET – Stack Memory as a Shared Ressource 13 – 19

Where to Switch Stacks?

Select stack-switch function to minimize the WCSC.
Parents of blocking system calls are forbidden
Children of stack-switch functions are forbidden
Possibilities: extended, basic, or semi-extended tasks

T#1 T#2

f() g() j() k()

wait() x() l() q()

Stack Switch

On Shared

T#1 T#2

f() g() j() k()

wait() x() l() q()

Stack Switch

On Shared

Minimizing the WCSC: Two-level Optimization

LUH SET – Stack Memory as a Shared Ressource 13 – 19

Results

Synthetic Benchmark Scenario
Run-Time of the Optimization
Stack-space Savings

LUH SET – Stack Memory as a Shared Ressource 14 – 19

Synthetic Benchmark Scenarios

Evaluate the stack-optimization with > 14000 systems
#Threads: 20 – 50

#IRQs: 1 – 20

#Waiting Threads: 0 – 15

#Functions: 100 – 1000

#Priority-Ceiling Resources: 1 – 10

Integration into Whole-System Generator
dOSEK: Python framework for system analysis and kernel generation

LLVM: Extract sizes of stack frames and stack-switch prologue

Gurobi: state-of-the-art ILP solver

LUH SET – Stack Memory as a Shared Ressource 15 – 19

Run-Time of Optimization

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80
R
u
n
T
im

e
(i
n
s)

20 25 30 35 40 45 50
0

50

100

150

1 2 3 4 5 6 7 8 9 10
0

100

200
Genetic Algorithm

GCFG Calculation

genetic
timeout

0 5 10 15
0

20

40

60

80

Waiting Threads

R
u
n
T
im

e
(i
n
s)

Genetic Algorithm

GCFG Calculation

#IRQs #Threads

#Functions #Waiting

LUH SET – Stack Memory as a Shared Ressource 16 – 19

Stack-Usage Factors

1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

S
ta
c
k
U
sa
g
e
F
a
c
to
r

BTS system

SET system

20 25 30 35 40 45 50
0.75

0.8

0.85

0.9

0.95

1
BTS system

SET system

1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

(d) Functions (·100)

S
ta
c
k
U
sa
g
e
F
a
c
to
r

BTS

SET

0 5 10 15

0.4

0.6

0.8

1
BTS system

SET system

11 12 13 14 15

0.85

0.9

0.95

1

∆ = 0.07

#IRQs #Threads

#Functions #Waiting

LUH SET – Stack Memory as a Shared Ressource 17 – 19

Conclusion

LUH SET – Stack Memory as a Shared Ressource 18 – 19

Conclusion

Semi-Extended Tasks
SETs switch to Shared Stack if possible
Switching is efficient and does not involve the RTOS

Fine-Grained Worst-Case Stack Consumption Analysis
Real-Time Properties (Priorities, Preemption Thresholds)
Flow-Sensitive Preemption Constraints
Supports Semi-Extended Tasks

Stack-Space Saving compared to pure BTS systems
7 percent on average, up to 52 percent
80 percent of all systems used less stack space

LUH SET – Stack Memory as a Shared Ressource 19 – 19

Genetic Algorithm as a Higher-Level Optimization

Genetic algorithm to find a good configuration
Encode configuration as bit-vector
Bitmasks verify configuration
Configurations can be breed, mixed, and mutated

g() x() l() T#2 j() k() q()

1 0 0 0 0 1 0

Genetic Algorithm with Initial Population
1. Generate new bit-vectors by mutation and cross-over
2. Calculate fitness (WCSC) with IPET/ILP solver
3. Select top 20 switch-configurations
4. Goto 1, until satisfied (60 seconds of no progress)

LUH SET – 1 – 1

T#1 T#2

f() g() j() k()

wait() x() l() q()

Stack Switch

On Shared

	Memory Consumption in Embedded Systems
	Memory Consumption in Embedded Systems
	Memory Consumption in Embedded Systems
	Stack Memory as a Shared Ressource
	Living in Private: Normal Threads
	Living in Private: Normal Threads
	Living in a Commune: Basic Tasks
	Living in a Commune: Basic Tasks
	Problem Field
	Problem Field
	Semi-Extended Tasks (SET)
	Technical Detail: Function Prologue
	Worst-Case Stack Consumption (WCSC)
	Worst-Case Stack Consumption (WCSC)
	Worst-Case Stack Consumption (WCSC)
	Worst-Case Stack Consumption (WCSC)
	Worst-Case Stack Consumption (WCSC)
	Worst-Case Stack Consumption (WCSC)
	Worst-Case Stack Consumption (WCSC)
	Worst-Case Stack Consumption (WCSC)
	Where to Switch Stacks?
	Where to Switch Stacks?
	Where to Switch Stacks?
	Where to Switch Stacks?
	Synthetic Benchmark Scenarios
	Run-Time of Optimization
	Stack-Usage Factors
	Conclusion

	Appendix
	Genetic Algorithm as a Higher-Level Optimization

