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Motivation

a Web server benchmark at Cloudflare:

a ChaCha20-Poly1305 encryption, OpenSSL vs. BoringSSL
a Inisolation, OpenSSL much faster: 2.89 GB/s vs. 1.46 GB/s
@ OpenSSL system overall 10% slower!

a Only ~2.5% of time spent on encryption

a Only difference:

@ OpenSSL: 512-bit vectorization (AVX-512)
a BoringSSL: 256-bit vectorization (AVX2)

a What happened?

Vlad Krasnov: On the dangers of Intel’s frequency scaling. Blog post, Nov. 2017
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AVX512 Performance Variability (1)

a AVX-512 units draw increased power
m CPU reduces frequency (for at least 2ms)
No vectorization:

| | S | Scalar code | S | |

AVX-512:
| |V| Scalar code |V| |

il —

time
m Same effect for AVX2, but weaker
=» Slows down unrelated scalar code

Intel ®64 and IA-32 Architectures Optimization Reference Manual, April 2018
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AVX512 Performance Variability (2)

No vectorization:
| | S | Scalar code | S | |

AVX-512:
| |V| Scalar code |V| |

a Development effort

a Effect depends on workload =- Might not notice
a Misleading profiling results

@ Dependability

a A simple library update can break your system!
a Fairness

a Isolation on multi-tenant systems?
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Only on Intel CPUs? ﬂ(“

a Future chips: Lots of dark silicon
=?» Intensive use of accelerators

m Accelerators consume additional power
=» Future chips will (likely) show similar behaviour.

Michael B. Taylor: Is Dark Silicon Useful? Harnessing the Four Horsemen of the Coming Dark Silicon Apocalypse. DAC'12
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Idea: Reconfigurable System

a Observation: Core is actually reconfigurable
a Fast core without AVX-512

m Slow core with AVX-512

fast
core

AVX2

m Reconfig. mechanism: Execute any AVX-512 instruction

2ms timeout

execute
AVX-512 code

slow
core

AVX-512

a But: Reconfigurable system theory not applicable

a Approaches focus on choosing one core type for a job

a E.g., emulate AVX-512 instructions

a Each core type only good for parts of the code
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Idea: Asymmetric System ﬂSlT

Karlsr e of Technology

m Observation: We have multiple cores
a Asymmetric systems perform well for heterogeneous workloads

slow slow slow slow
core core core fast fast core
>| core core
AVX-512 | AVX-512 | AVX-512 AVX2 AVX2 AVX-512

m Dedicate some (most?) cores to scalar code
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Mechanism: Instrumentation ﬂ(“

a Need to modify existing software
=» Manual instrumentation of problematic functions

m Library to move function pointer and context to thread pool

1 |run_on_avx_core(function(){
avx_code();

3 |}1);
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Prototype ﬂ(“

m Cloudflare scenario replicated
® nginx web server, OpenSSL, wrk2 benchmark client
m Static web page, on-the-fly compression

® OpenSSL encryption/decryption on separate cores

Core i9-7940X (Skylake-X)

:‘ nginx TE‘ wrk2

eb serv benchmar

c] Cnbncjﬁmw

OpenSSL encryptlon/decryption

a 5% vectorized code = one hyperthread
a Other hyperthread: Scalar code, slowed down
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Results: Throughput T
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= Core specialization reduces variablity
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Results: Throughput ﬂ(“
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= Core specialization reduces variablity
a Always all HW threads of a core affected
a Dedicating whole core to AVX would reduce utilization
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Mechanism Design Space ﬂ(“

a Better: Trap problematic instructions
(Intel: Restrict storage for thread context?)

a Automatically migrate thread
m Easier to use, but likely higher overhead

a Prototype for performance evaluation:

1 |sched_setaffinity(my_pid, AVX_CORES);
2 |avx_code();
3 | sched_setaffinity(my_pid, SCALAR_CORES);
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Results: Throughput AT
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m Thread migration causes (moderate) overhead
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Results: Throughput
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a Thread migration causes (moderate) overhead

a Performance advantage still significant
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Future Work

Prototype: Information about problematic code available

Practice: Limited knowledge/too expensive

m Instrumentation: How to pinpoint problematic code?
a Not all vector instructions cause equal frequency change
a Frequency change happens significantly after problematic code
a Use last-branch record to move back in time

Automatic approach: When to migrate back to scalar core?

a Migrate back after fixed time
m lterative approach: Change timeout, measure avg. frequency, repeat.

Better hardware: Want to be notified before reconfiguration?

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 13/16



Summary ﬂ(“

a Significantly lower AVX-512 frequency
@ Frequency changes expensive = unrelated code affected
a Performance highly variable

a Approach: Model system as reconfigurable asymmetric system
a Migrate threads between AVX and non-AVX cores

a Result:

a Frequency effect mitigated
a Significantly increased performance
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Results: Frequency ﬂ(“

m Time spent at different frequency levels
a For OpenSSL with AVX-512:
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=» Much less time at AVX frequencies
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Results: Frequency

a Correlation between frequency and performance?
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Results: Frequency ﬂ(“

m What if C-states and cpufreq governor are disabled?
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=» Slower (less turbo), but no significant difference
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Advantage of vectorization? ﬂ(“

Different workload, less scalar CPU load:
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=?» Vectorization beneficial
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