
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) - OPERATING SYSTEMS GROUP

Mitigating AVX-Induced Performance Variability with
Core Specialization

Mathias Gottschlag, Frank Bellosa | October 18, 2018

KIT – The Research University in the Helmholtz Association www.kit.edu

http://www.kit.edu

Motivation

Web server benchmark at Cloudflare:
ChaCha20-Poly1305 encryption, OpenSSL vs. BoringSSL
In isolation, OpenSSL much faster: 2.89 GB/s vs. 1.46 GB/s
OpenSSL system overall 10% slower!
Only ≈2.5% of time spent on encryption

Only difference:
OpenSSL: 512-bit vectorization (AVX-512)
BoringSSL: 256-bit vectorization (AVX2)

What happened?

Vlad Krasnov: On the dangers of Intel’s frequency scaling. Blog post, Nov. 2017

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 2/16

AVX512 Performance Variability (1)

AVX-512 units draw increased power
CPU reduces frequency (for at least 2 ms)

time

No vectorization:

AVX-512:

S Scalar code S

V Scalar code V

fmax

fAVX

Same effect for AVX2, but weaker
Ü Slows down unrelated scalar code

Intel R©64 and IA-32 Architectures Optimization Reference Manual, April 2018

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 3/16

AVX512 Performance Variability (2)

No vectorization:

AVX-512:

S Scalar code S

V Scalar code V

Development effort
Effect depends on workload⇒ Might not notice
Misleading profiling results

Dependability
A simple library update can break your system!

Fairness
Isolation on multi-tenant systems?

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 4/16

Only on Intel CPUs?

Future chips: Lots of dark silicon

Ü Intensive use of accelerators

Accelerators consume additional power

Ü Future chips will (likely) show similar behaviour.

Michael B. Taylor: Is Dark Silicon Useful? Harnessing the Four Horsemen of the Coming Dark Silicon Apocalypse. DAC’12

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 5/16

Idea: Reconfigurable System

Observation: Core is actually reconfigurable
Fast core without AVX-512
Slow core with AVX-512

fast

core

AVX2

slow

core

AVX-512execute

AVX-512 code

2ms timeout

Reconfig. mechanism: Execute any AVX-512 instruction

But: Reconfigurable system theory not applicable
Approaches focus on choosing one core type for a job

E.g., emulate AVX-512 instructions

Each core type only good for parts of the code

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 6/16

Idea: Asymmetric System

Observation: We have multiple cores

Asymmetric systems perform well for heterogeneous workloads

slow

core

AVX-512

slow

core

AVX-512

slow

core

AVX-512

fast

core

AVX2

fast

core

AVX2

slow

core

AVX-512

Dedicate some (most?) cores to scalar code

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 7/16

Mechanism: Instrumentation

Need to modify existing software

Ü Manual instrumentation of problematic functions

Library to move function pointer and context to thread pool

1 run_on_avx_core (function () {
2 avx_code () ;
3 }) ;

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 8/16

Prototype

Cloudflare scenario replicated
nginx web server, OpenSSL, wrk2 benchmark client
Static web page, on-the-fly compression

OpenSSL encryption/decryption on separate cores

Core i9-7940X (Skylake-X)

C C C C C

C C C C

C

C

C

CC

OpenSSL encryption/decryption

5% vectorized code⇒ one hyperthread
Other hyperthread: Scalar code, slowed down

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 9/16

Results: Throughput

SSE4 AVX2 AVX-512
0

2

4

6

8

Th
ro

ug
hp

ut
(×

10
00

re
q/

s)

Unmodified
Core specialization

⇒ Core specialization reduces variablity

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 10a/16

Results: Throughput

SSE4 AVX2 AVX-512

7

7.5
-5.9%

-13.4%

-0.2% -0.7%

-3.7%

Th
ro

ug
hp

ut
(×

10
00

re
q/

s)

Unmodified
Core specialization

⇒ Core specialization reduces variablity
Always all HW threads of a core affected
Dedicating whole core to AVX would reduce utilization

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 10/16

Mechanism Design Space

Better: Trap problematic instructions
(Intel: Restrict storage for thread context?)

Automatically migrate thread

Easier to use, but likely higher overhead

Prototype for performance evaluation:

1 sched_setaffinity (my_pid , AVX_CORES) ;
2 avx_code () ;
3 sched_setaffinity (my_pid , SCALAR_CORES) ;

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 11/16

Results: Throughput

SSE4 AVX2 AVX-512
0

2

4

6

8

Th
ro

ug
hp

ut
(×

10
00

re
q/

s)

Unmodified
Optimized

Thread migration

Thread migration causes (moderate) overhead

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 12a/16

Results: Throughput

SSE4 AVX2 AVX-512

7

7.5
-5.9%

-13.4%

-0.2% -0.7%

-3.7%-3.4% -3.6%

-5.6%

Th
ro

ug
hp

ut
(×

10
00

re
q/

s)

Unmodified
Optimized

Thread migration

Thread migration causes (moderate) overhead

Performance advantage still significant

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 12/16

Future Work

Prototype: Information about problematic code available

Practice: Limited knowledge/too expensive

Instrumentation: How to pinpoint problematic code?
Not all vector instructions cause equal frequency change
Frequency change happens significantly after problematic code
Use last-branch record to move back in time

Automatic approach: When to migrate back to scalar core?
Migrate back after fixed time
Iterative approach: Change timeout, measure avg. frequency, repeat.

Better hardware: Want to be notified before reconfiguration?

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 13/16

Summary

Significantly lower AVX-512 frequency

Frequency changes expensive⇒ unrelated code affected

Performance highly variable

Approach: Model system as reconfigurable asymmetric system

Migrate threads between AVX and non-AVX cores

Result:
Frequency effect mitigated
Significantly increased performance

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 14/16

Results: Frequency

Time spent at different frequency levels
For OpenSSL with AVX-512:

Unmodified Closures
0

20

40

60

80

Pe
rc

en
ta

ge
of

tim
e

Normal
Light AVX

Heavy AVX
Transition

Ü Much less time at AVX frequencies

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 15/16

Results: Frequency

Correlation between frequency and performance?

6,500 7,000 7,500 8,000

3,200

3,400

3,600

3,800

4,000

Throughput (×1000 req/s)

A
vg

.
Fr

eq
ue

nc
y

(G
H

z)

Unmodified
Thread migration

Closures

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 16/16

Results: Frequency

What if C-states and cpufreq governor are disabled?

6,400 6,600 6,800 7,000 7,200 7,400 7,600

3,200

3,400

3,600

Throughput (×1000 req/s)

A
vg

.
Fr

eq
ue

nc
y

(G
H

z)

Unmodified
Thread migration

Closures

Ü Slower (less turbo), but no significant difference

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 17/16

Advantage of vectorization?

Different workload, less scalar CPU load:

SSE4 AVX2 AVX-512
0

20

40

60

80

100

Th
ro

ug
hp

ut
(×

10
00

re
q/

s)

Unmodified

Ü Vectorization beneficial

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 18/16

