KIT

Karlsruhe Institute of Technology

Mitigating AVX-Induced Performance Variability with
Core Specialization

Mathias Gottschlag, Frank Bellosa | October 18, 2018

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) - OPERATING SYSTEMS GROUP

KIT — The Research University in the Helmholtz Association

http://www.kit.edu

Motivation

a Web server benchmark at Cloudflare:

a ChaCha20-Poly1305 encryption, OpenSSL vs. BoringSSL
a Inisolation, OpenSSL much faster: 2.89 GB/s vs. 1.46 GB/s
@ OpenSSL system overall 10% slower!

a Only ~2.5% of time spent on encryption

a Only difference:

@ OpenSSL: 512-bit vectorization (AVX-512)
a BoringSSL: 256-bit vectorization (AVX2)

a What happened?

Vlad Krasnov: On the dangers of Intel’s frequency scaling. Blog post, Nov. 2017

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 2/16

AVX512 Performance Variability (1)

a AVX-512 units draw increased power
m CPU reduces frequency (for at least 2ms)
No vectorization:

| | S | Scalar code | S | |

AVX-512:
| |V| Scalar code |V| |

il —

time
m Same effect for AVX2, but weaker
=» Slows down unrelated scalar code

Intel ®64 and IA-32 Architectures Optimization Reference Manual, April 2018

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 3/16

AVX512 Performance Variability (2)

No vectorization:
| | S | Scalar code | S | |

AVX-512:
| |V| Scalar code |V| |

a Development effort

a Effect depends on workload =- Might not notice
a Misleading profiling results

@ Dependability

a A simple library update can break your system!
a Fairness

a Isolation on multi-tenant systems?

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 4/16

Only on Intel CPUs? ﬂ(“

a Future chips: Lots of dark silicon
=?» Intensive use of accelerators

m Accelerators consume additional power
=» Future chips will (likely) show similar behaviour.

Michael B. Taylor: Is Dark Silicon Useful? Harnessing the Four Horsemen of the Coming Dark Silicon Apocalypse. DAC'12

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 5/16

Idea: Reconfigurable System

a Observation: Core is actually reconfigurable
a Fast core without AVX-512

m Slow core with AVX-512

fast
core

AVX2

m Reconfig. mechanism: Execute any AVX-512 instruction

2ms timeout

execute
AVX-512 code

slow
core

AVX-512

a But: Reconfigurable system theory not applicable

a Approaches focus on choosing one core type for a job

a E.g., emulate AVX-512 instructions

a Each core type only good for parts of the code

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization

6/16

Idea: Asymmetric System ﬂSlT

Karlsr e of Technology

m Observation: We have multiple cores
a Asymmetric systems perform well for heterogeneous workloads

slow slow slow slow
core core core fast fast core
>| core core
AVX-512 | AVX-512 | AVX-512 AVX2 AVX2 AVX-512

m Dedicate some (most?) cores to scalar code

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 7/16

Mechanism: Instrumentation ﬂ(“

a Need to modify existing software
=» Manual instrumentation of problematic functions

m Library to move function pointer and context to thread pool

1 |run_on_avx_core(function(){
avx_code();

3 |}1);

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 8/16

Prototype ﬂ(“

m Cloudflare scenario replicated
® nginx web server, OpenSSL, wrk2 benchmark client
m Static web page, on-the-fly compression

® OpenSSL encryption/decryption on separate cores

Core i9-7940X (Skylake-X)

:‘ nginx TE‘ wrk2

eb serv benchmar

c] Cnbncjﬁmw

OpenSSL encryptlon/decryption

a 5% vectorized code = one hyperthread
a Other hyperthread: Scalar code, slowed down

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 9/16

Results: Throughput T
| |

2 — - a

B_ - —

Ci) -

S 6 h

o

= 00 Unmodified

= 4 ‘||l B Core specialization
&

S 2f 8

o

=

'_

0

I I T
SSE4 AVX2 AVX-512

= Core specialization reduces variablity

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 10a/16

Results: Throughput ﬂ(“

Q —0.2% 0.7%
g_ —
g 75| B.7%
% 916 0o Unmodified
= [0 Core specialization
o
S 7| :
3
£ -13.4%
I I D\
SSE4 AVX2 AVX-512

= Core specialization reduces variablity
a Always all HW threads of a core affected
a Dedicating whole core to AVX would reduce utilization

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 10/16

Mechanism Design Space ﬂ(“

a Better: Trap problematic instructions
(Intel: Restrict storage for thread context?)

a Automatically migrate thread
m Easier to use, but likely higher overhead

a Prototype for performance evaluation:

1 |sched_setaffinity(my_pid, AVX_CORES);
2 |avx_code();
3 | sched_setaffinity(my_pid, SCALAR_CORES);

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 11/16

Results: Throughput AT
| |

N -1 R — h

S — _ [T ——

Ci) S

S 6 1

S 08 Unmodified
X al ||le Optimized

*g [0 Thread migration
<

S 20 1

o

<

|_

0

I I I
SSE4 AVX2 AVX-512

m Thread migration causes (moderate) overhead

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 12a/16

Results: Throughput

08 Unmodified
0o Optimized
[0 Thread migration

0 —0-2% 0.7%
g_ —
oy -3.4% -83.6% _ A
S 75| .4 8.6% -3.7%
= 5.9% 5.6%
%S
5
o
g 7
3
£ -13.4%
I I D I
SSE4 AVX2 AVX-512

a Thread migration causes (moderate) overhead

a Performance advantage still significant

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization

12/16

Future Work

Prototype: Information about problematic code available

Practice: Limited knowledge/too expensive

m Instrumentation: How to pinpoint problematic code?
a Not all vector instructions cause equal frequency change
a Frequency change happens significantly after problematic code
a Use last-branch record to move back in time

Automatic approach: When to migrate back to scalar core?

a Migrate back after fixed time
m lterative approach: Change timeout, measure avg. frequency, repeat.

Better hardware: Want to be notified before reconfiguration?

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 13/16

Summary ﬂ(“

a Significantly lower AVX-512 frequency
@ Frequency changes expensive = unrelated code affected
a Performance highly variable

a Approach: Model system as reconfigurable asymmetric system
a Migrate threads between AVX and non-AVX cores

a Result:

a Frequency effect mitigated
a Significantly increased performance

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 14/16

Results: Frequency ﬂ(“

m Time spent at different frequency levels
a For OpenSSL with AVX-512:

© 80 - -
£
:c:; 60 F— 0w Normal
o 00 Light AVX
S 40l || Heavy AVX
C .
@ lo Transition
$ 20| H :

0 ﬂ‘ — ﬁ‘m

Unmodified Closures

=» Much less time at AVX frequencies

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 15/16

Results: Frequency

a Correlation between frequency and performance?

Frequency (GHz)

Avg

4,000

w
(o)
o
o

3,600
3,400

3,200

x s |
[x X ¢ e
(¢
L | | | | |
6,500 7,000 7,500 8,000

Throughput (<1000 req/s)

o

+

Unmodified

|| x Thread migration

Closures

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization

16/16

Results: Frequency ﬂ(“

m What if C-states and cpufreq governor are disabled?

I I I I I
¥
5 3,600 |
§ o Unmodified
g x Thread migration
33,400 1)+ Closures
C
2
<3,200 .
| | | |

|
6,400 6,600 6,800 7,000 7,200 7,400 7,600
Throughput (<1000 req/s)

=» Slower (less turbo), but no significant difference

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 17/16

Advantage of vectorization? ﬂ(“

Different workload, less scalar CPU load:
| |

__100F =
wn —
ISy -
© 80| .
o
8 —
- 60 .
X [8 Unmodified
3 40| |
ey
[@)]
3 20| .
£
|_
0

! ! !
SSE4 AVX2 AVX-512

=?» Vectorization beneficial

M. Gottschlag, F. Bellosa — Mitigating AVX-Induced Performance Variability with Core Specialization 18/16

