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Motivation

Web server benchmark at Cloudflare:
ChaCha20-Poly1305 encryption, OpenSSL vs. BoringSSL
In isolation, OpenSSL much faster: 2.89 GB/s vs. 1.46 GB/s
OpenSSL system overall 10% slower!
Only ≈2.5% of time spent on encryption

Only difference:
OpenSSL: 512-bit vectorization (AVX-512)
BoringSSL: 256-bit vectorization (AVX2)

What happened?

Vlad Krasnov: On the dangers of Intel’s frequency scaling. Blog post, Nov. 2017
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AVX512 Performance Variability (1)

AVX-512 units draw increased power
CPU reduces frequency (for at least 2 ms)

time

No vectorization:

AVX-512:

S Scalar code S

V Scalar code V

fmax

fAVX

Same effect for AVX2, but weaker
Ü Slows down unrelated scalar code

Intel R©64 and IA-32 Architectures Optimization Reference Manual, April 2018
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AVX512 Performance Variability (2)

No vectorization:

AVX-512:

S Scalar code S

V Scalar code V

Development effort
Effect depends on workload⇒ Might not notice
Misleading profiling results

Dependability
A simple library update can break your system!

Fairness
Isolation on multi-tenant systems?
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Only on Intel CPUs?

Future chips: Lots of dark silicon

Ü Intensive use of accelerators

Accelerators consume additional power

Ü Future chips will (likely) show similar behaviour.

Michael B. Taylor: Is Dark Silicon Useful? Harnessing the Four Horsemen of the Coming Dark Silicon Apocalypse. DAC’12
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Idea: Reconfigurable System

Observation: Core is actually reconfigurable
Fast core without AVX-512
Slow core with AVX-512

fast

core

AVX2

slow

core

AVX-512execute

AVX-512 code

2ms timeout

Reconfig. mechanism: Execute any AVX-512 instruction

But: Reconfigurable system theory not applicable
Approaches focus on choosing one core type for a job

E.g., emulate AVX-512 instructions

Each core type only good for parts of the code
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Idea: Asymmetric System

Observation: We have multiple cores

Asymmetric systems perform well for heterogeneous workloads

slow

core

AVX-512

slow

core

AVX-512

slow

core

AVX-512

fast

core

AVX2

fast

core

AVX2

slow

core
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Dedicate some (most?) cores to scalar code
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Mechanism: Instrumentation

Need to modify existing software

Ü Manual instrumentation of problematic functions

Library to move function pointer and context to thread pool

1 run_on_avx_core ( function ( ) {
2 avx_code ( ) ;
3 } ) ;
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Prototype

Cloudflare scenario replicated
nginx web server, OpenSSL, wrk2 benchmark client
Static web page, on-the-fly compression

OpenSSL encryption/decryption on separate cores

Core i9-7940X (Skylake-X)

C C C C C

C C C C

C

C

C

CC

OpenSSL encryption/decryption

5% vectorized code⇒ one hyperthread
Other hyperthread: Scalar code, slowed down
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Results: Throughput
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⇒ Core specialization reduces variablity
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Results: Throughput
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⇒ Core specialization reduces variablity
Always all HW threads of a core affected
Dedicating whole core to AVX would reduce utilization
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Mechanism Design Space

Better: Trap problematic instructions
(Intel: Restrict storage for thread context?)

Automatically migrate thread

Easier to use, but likely higher overhead

Prototype for performance evaluation:

1 sched_setaffinity ( my_pid , AVX_CORES ) ;
2 avx_code ( ) ;
3 sched_setaffinity ( my_pid , SCALAR_CORES ) ;
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Results: Throughput
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Results: Throughput
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Thread migration causes (moderate) overhead

Performance advantage still significant
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Future Work

Prototype: Information about problematic code available

Practice: Limited knowledge/too expensive

Instrumentation: How to pinpoint problematic code?
Not all vector instructions cause equal frequency change
Frequency change happens significantly after problematic code
Use last-branch record to move back in time

Automatic approach: When to migrate back to scalar core?
Migrate back after fixed time
Iterative approach: Change timeout, measure avg. frequency, repeat.

Better hardware: Want to be notified before reconfiguration?

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 13/16



Summary

Significantly lower AVX-512 frequency

Frequency changes expensive⇒ unrelated code affected

Performance highly variable

Approach: Model system as reconfigurable asymmetric system

Migrate threads between AVX and non-AVX cores

Result:
Frequency effect mitigated
Significantly increased performance
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Results: Frequency

Time spent at different frequency levels
For OpenSSL with AVX-512:
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Ü Much less time at AVX frequencies

M. Gottschlag, F. Bellosa – Mitigating AVX-Induced Performance Variability with Core Specialization 15/16



Results: Frequency

Correlation between frequency and performance?
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Results: Frequency

What if C-states and cpufreq governor are disabled?
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Ü Slower (less turbo), but no significant difference
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Advantage of vectorization?

Different workload, less scalar CPU load:
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Ü Vectorization beneficial
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