

A Trusted Reimbursed Computing System based on WebAssembly and Intel SGX

Manuel Nieke, Rüdiger Kapitza,

Computation Offloading

- Idea: Move computations to remote party
 - Gain additional computation power
 - More flexible resource usage
- Some use cases:
 - Cloud applications
 - Volunteer computing

Drawbacks

Problem: Loss of control

- Remote party can
 - access (sensitive) data
 - interfere with execution

Drawbacks

Problem: Loss of control

- Remote party can
 - access (sensitive) data
 - interfere with execution
- \Rightarrow Suboptimal solutions
 - Sensitive data not moved to cloud
 - Volunteer computing workloads computed multiple times
 - Better: Trusted execution
 - Relies on hardware support

Drawbacks

<u>Problem</u>: No control over resource accounting

- Billing in the cloud
 - Cloud provider can "overbill"
- Leaderboards in volunteer computing
 - Volunteers cheat to get better ranking

Item	On-demand price	Preemptible price	1 year commitment price	3 year commitment price
Predefined vCPUs	\$0.031611 / vCPU hour	\$0.006655 / vCPU hour	\$0.019915 / vCPU hour	\$0.014225 / vCPU hour
Predefined Memory	\$0.004237 / GB hour	\$0.000892 / GB hour	\$0.002669 / GB hour	\$0.001907 / GB hour

Rank	Name	Recent average credit	Total credit	Country	Participant since
1	CharityEngine1	5,326,678	1,227,487,200	International	4 Aug 2017, 19:23:08 UTC
2	CharityEngine2	5,295,859	887,444,640	International	29 Nov 2017, 9:40:04 UTC
3	mojdan	1,822,186	1,432,013,520	Czech Republic	12 Mar 2013, 8:06:10 UTC
4	dis-computer-and-more	1,379,626	917,723,520	Germany	3 Feb 2015, 0:24:29 UTC
5	grcpool.com	1,268,186	369,807,360	International	28 Jan 2017, 20:40:17 UTC
6	nau-hpc	1,184,350	1,174,063,200	United States	6 Nov 2015, 21:50:46 UTC
7	niklas	1,139,302	159,337,920	Germany	30 Jan 2018, 13:02:03 UTC
8	🌡 [SG-FC] hl	1,100,722	53,835,720	Germany	18 Jun 2012, 17:14:03 UTC
9	grcpool.com-2	992,784	270,820,800	International	21 Jun 2017, 21:28:12 UTC
10	grepool.com-3	842,005	222,703,680	International	3 Aug 2017, 11:22:44 UTC
11	Sightus@CAU	698,521	491,780,280	Germany	6 Nov 2013, 12:11:53 UTC
12	USTL-FIL (Lille Fr)	421,119	70,923,960	France	15 May 2013, 12:58:57 UTC
13	Maxwell [MM]	395,857	32,923,080	United States	1 Jan 2013, 22:36:37 UTC
14	Psynox	345,626	9,207,360	Germany	23 Oct 2013, 14:25:57 UTC
15	着 Bryan	307,562	56,316,840	United States	11 Dec 2012, 16:16:20 UTC
16	deniska26	300,082	35,940,000	Russia	9 Jan 2018, 13:29:41 UTC
17	Moor	298,269	170,159,160	Germany	12 May 2013, 22:16:36 UTC
18	EG	278,879	30,363,720	United States	20 Aug 2013, 13:16:30 UTC
19	& Spritex	277,848	279,505,920	Denmark	2 Jun 2015, 15:02:28 UTC
20	[SG] Archi_74	255,550	8,168,640	Germany	24 Apr 2017, 11:15:18 UTC

Our Goals

Execution platform for computation offloading

- Execution and data protected from host system
- Host system isolated from malicious programs

Resource accounting

- Not forgeable
- Independent of platform

- WebAssembly and SGX
- Resource Accounting
- Trusted Execution Platform
- Evaluation

- Goal: Fast, isolated code execution in browser
- Mozilla: asm.js
 - JavaScript subset with better performance
 - Transcompile regular programs

- Goal: Fast, isolated code execution in browser
- Mozilla: asm.js
 - JavaScript subset with better performance
 - Transcompile regular programs
- Google: PNaCl
 - Native code in sandbox
- Combine both ⇒ WebAssembly (WASM)

Manuel Nieke, Rüdiger Kapitza Page 8 A Trusted Reimbursed Computing System based on WebAssembly and Intel SGX

Manuel Nieke, Rüdiger Kapitza Page 8 A Trusted Reimbursed Computing System based on WebAssembly and Intel SGX Institute of Operating Systems and Computer Networks

- Polyglot
 - C/C++, Rust, Go, ...
- Platform independent
- Sandboxed execution
- "Near native" speed

- Polyglot
 - C/C++, Rust, Go, ...
- Platform independent
- Sandboxed execution
- "Near native" speed

Trusted Execution Platform

 \checkmark Host isolation

Intel SGX

- Instruction set extension for Intel CPUs
- Introduced in Skylake (2015)
- Parts of applications run inside enclaves
 - Encrypted
 - Integrity protected
 - Remote attestation
 - Verify that applications runs correctly in enclave

Intel SGX

- Instruction set extension for Intel CPUs
- Introduced in Skylake (2015)
- Parts of applications run inside enclaves
 - Encrypted
 - Integrity protected
 - Remote attestation
 - Verify that applications runs correctly in enclave

Trusted Execution Platform

- √ Data not visible
- \checkmark Protection against interference with execution

CPU Accounting

- Accounting usually reliant on time
 - E.g. vCPU/h
- <u>Problem</u>: No accurate trusted time in enclave

CPU Accounting

- Accounting usually reliant on time
 - E.g. vCPU/h
- <u>Problem</u>: No accurate trusted time in enclave
- <u>Solution</u>: Accounting based on executed instructions
 - Instrument application code to count instructions
 - Based on (platform independent) WASM instructions
 - Utilize text representation

- Original approach
 - Based on basic blocks
 - No if, loop, return, ...
 - Counter incremented at end of block

- Optimised approach
 - Consider only possible counter values
 - Based on possible control flows

end

tee_local 4

get_local 1

<Increment counter by 7>

- Consider only possible counter values
- Based on possible control flows
- Further optimisation
 - Identify loop iterators with constant increment
 - Compare iterator before and after loop to calculate iterarions
 - Increment counter <u>once</u>

i32.const 255 i32.and <Increment counter by 1> end tee_local 4 get_local 1

<Increment counter by 7>

Other Resources

- Memory
 - WASM memory as contiguous blocks
 - Easy to determine size
- File and network I/O
 - Platform provides functions to WASM
 - Modify functions to measure I/O volume

Other Resources

- Memory
 - WASM memory as contiguous blocks
 - Easy to determine size
- File and network I/O
 - Platform provides functions to WASM
 - Modify functions to measure I/O volume

Instrumentation

- \checkmark Platform independent
- ? Non-forgeable

Instrumentation

- Accounting needs to be trusted by all parties
- ⇒ Instrumentation inside enclave!

Instrumentation

- Accounting needs to be trusted by all parties
- ⇒ Instrumentation inside enclave!

Instrumentation

✓ Platform independent✓ Non-forgeable

Two-sided Sandbox

- Protection of both host and offloaded code
 - Host by sandbox
 - Code by SGX

Two-sided Sandbox

- Protection of both host and offloaded code
 - Host by sandbox
 - Code by SGX
- "Intermediate layer" protected by both
 - Code management
 - Resource accounting

Evaluation Goal & Setup

- How performant is WebAssembly?
- What overhead is introduced by
 - trusted execution (SGX)?
 - resource accounting?
- SGX protected JS-engine
 - Google's V8
- Machine:
 - Intel(R) Xeon(R) CPU E3-1230 v5 @ 3.40GHz
 - 32GB memory

WASM Performance

Manuel Nieke, Rüdiger Kapitza Page 18 A Trusted Reimbursed Computing System based on WebAssembly and Intel SGX Institute of Operating Systems and Computer Networks

WASM Performance

WASM Performance

Depends on application but overall comparable to native speed

Technische Universität Braunschweig

Manuel Nieke, Rüdiger Kapitza Page 18 A Trusted Reimbursed Computing System based on WebAssembly and Intel SGX

SGX and Instrumentation

- 3 volunteer computing projects
- Baseline:
 WASM

SGX and Instrumentation

Conclusion

Trusted Execution Platform

- Application and host protected with SGX and WebAssembly
- Good performance with WASM and SGX

Resource accounting

- Platform independent with byte-code instrumentation
- Trusted by host and application provider
- Low performance impact

Conclusion

Trusted Execution Platform

- Application and host protected with SGX and WebAssembly
- Good performance with WASM and SGX

Resource accounting

- Platform independent with byte-code instrumentation
- Trusted by host and application provider
- Low performance impact

In progress

- Use cases: Serverless cloud, execution-as-payment
- Standalone WASM execution environments

Polybench

Manuel Nieke, Rüdiger Kapitza | Page 21 A Trusted Reimbursed Computing System based on WebAssembly and Intel SGX

Institute of Operating Systems and Computer Networks