
KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

OPERATING SYSTEMS GROUP

DEPARTMENT OF COMPUTER SCIENCE

www.kit.edu

Fast and Accurate Functional Simulation
for Dynamic Full System Analysis

GI Fachgruppentreffen Betriebssysteme (BS) 2018

Marc Rittinghaus, Frank Bellosa

Node 1Node 0

Virtualization
[Core 0]

Virtualization
[Core 1] Non-Det. Events

Non-Det. Events

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

Central Storage

Virtualization Node
Management Node Simulation Node

Simulation Node
Analysis Node

SimuTrace

Simulation
[Interval 0]

SimuTrace SimuTrace SimuTrace

Simulation
[Interval 1]

Simulation
[Interval 2]

Simulation
[Interval 3]

SimuTrace

Simulation
[Interval 4]

SimuTrace SimuTrace SimuTrace

Simulation
[Interval 5]

Simulation
[Interval 6]

Simulation
[Interval 7]

Si
m

u
Tr

ac
e

Si
m

u
Tr

ac
e

St
o

ra
ge

 P
ro

vi
d

e
r

St
o

ra
ge

 P
ro

vi
d

e
r

Virtualization Logs Simulation Traces

Checkpoints

In
p

u
t

P
ro

ce
ss

o
r

Trace Data

Results

Trace Data Si
m

u
Tr

ac
e

Si
m

u
Tr

ac
e

Custom Analysis

Custom Analysis

Analysis Results

Phase 1 Phase 2 Phase 3

Operating Systems Group

Department of Computer Science
2

Motivation

Study properties of redundant memory contents [Miller13]

Origin? Lifetime? Sharing possible?

Analyze memory contents after each modification

But: Analysis should not affect workload

Analyze memory access patterns on system interfaces [Jurczyk13, Wilhelm15]

Detect vulnerabilities in Windows 8 and Xen (CVE-2015-8550)

Trace individual memory reads and writes

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

We want detailed runtime information

Operating Systems Group

Department of Computer Science
3

Motivation

Functional full system simulation

Allows collecting required data

Simulation on instruction-level

Includes operating system and drivers

But: It is slow

Virtualization Simulation

KVM QEMU Simics

~ 1x ~ 100x ~ 1000x
Average slowdowns for: kernel build, SPECint_base06, LAMMPS

• Not practical for long-running workloads

• Loss of interactivity (users and remote hosts)

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

Operating Systems Group

Department of Computer Science
4

SimuBoost

Use virtualization and split execution into intervals

Checkpoints at interval boundaries bootstrap simulations

Speed difference drives parallelization

Hardware acceleration provides full interactivity

Does not trade accuracy for speed

Scales with run time of workload

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

t

HW-assist.

Virtualization
[1]

Node 1

[2] [n]

Node 2

Node n [n]

Node V

Parallel

Simulation

[2]

[1]

Operating Systems Group

Department of Computer Science
5

Challenges

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

t

HW-assist.

Virtualization
[1]

Node 1

[2] [n]

Node 2

Node n

Node V

Parallel

Simulation

[n]

[2]

[1]

Downtime to capture consistent state

Keep below 100ms to preserve interactivity [RbMiller68]

Run time overhead to asynchronously save data

Keep low to minimize probe effect

Lightweight

Checkpointing

Operating Systems Group

Department of Computer Science
6

Challenges

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

t

HW-assist.

Virtualization
[1]

Node 1

[2] [n]

Node 2

Node n

Node V

Parallel

Simulation

[n]

[2]

[1]

Replay of events

Must have instruction-level precision

Run time overhead to capture non-deterministic events

Keep low to minimize probe effect

Lightweight

Checkpointing

Deterministic

Replay

Operating Systems Group

Department of Computer Science
7

Challenges

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

t

HW-assist.

Virtualization
[1]

Node 1

[2] [n]

Node 2

Node n

Node V

Parallel

Simulation

[n]

[2]

[1]

Lightweight

Checkpointing

Fast Simulation

Startup

Deterministic

Replay

Startup time: Transfer time + Checkpoint loading time

Keep low to maximize speedup

Network bandwidth to migrate checkpoints

Keep low to allow commodity network infrastructure (Gigabit Ethernet)

Operating Systems Group

Department of Computer Science
8

Challenges

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

t

HW-assist.

Virtualization
[1]

Node 1

[2] [n]

Node 2

Node n

Node V

Parallel

Simulation

[n]

[2]

[1]

Choose right configuration

Interval length & number of simulation nodes

Estimate performance

Parallel simulation time & speedup

Lightweight

Checkpointing

Fast Simulation

Startup

Deterministic

Replay

Performance

Model

?

?

?

Operating Systems Group

Department of Computer Science
9

Checkpointing

Problem: Cannot save full guest memory on each checkpoint

Observation: Only some data modified per interval

Dirty Page Tracking

Standard: Use page protections

Better: Scan extended page table (EPT)

Less page faults: ½ run time overhead, but 2x downtime

Pre-Scan keeps downtime low

Copy-On-Write (CoW)

Protect modified pages (only)

Asynchronously copy pages

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

Linux Kernel Build SPECjbb2005

22000 pages/s (85 MiB/s) 53000 pages/s (200 MiB/s)

[k] [k+1]

Downtime

S
c
a

n

Pre-Scan Async. Copy

Operating Systems Group

Department of Computer Science
10

Checkpointing II

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

Baseline: Simple Stop-And-Copy (4GiB VM)

Downtime: 1.2s

Run time overhead: ~3x

0

10

20

30

40

50

60

70

80

90

100

ap
ac

he

ke
rn

el
 b

ui
ld

la
m

e

gn
up

g

ph
pb

en
ch

po
st
m

ar
k

po
vr

ay

py
be

nc
h

D
o
w

n
ti
m

e
 [
m

s
]

256
512
1024
2048
4096
8192
16384

Memory

Size [MiB]

Interval: 1s

Operating Systems Group

Department of Computer Science
11

Checkpointing II

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

Baseline: Simple Stop-And-Copy (4GiB VM)

Downtime: 1.2s

Run time overhead: ~3x

0

10

20

30

40

50

60

70

80

90

100

ap
ac

he

ke
rn

el
 b

ui
ld

la
m

e

gn
up

g

ph
pb

en
ch

po
st
m

ar
k

po
vr

ay

py
be

nc
h

D
o
w

n
ti
m

e
 [
m

s
]

256
512
1024
2048
4096
8192
16384

Memory

Size [MiB]

Interval: 1s
11% 14% 2% 13% 2% 27% 2% 3%

Run Time Overhead

Operating Systems Group

Department of Computer Science
12

Deterministic Replay

Synchronous events (cpuid, rdtsc, port I/O, …)

Trap & record <value>

Replay value in simulation

Asynchronous events (interrupts, DMA)

Trap & record <landmark, value>

Landmark: Instruction counter + CPU registers

Inject event at landmark (e.g., raise interrupt)

Improve accuracy of simulation

Match instruction counting with hardware

Implement “undefined” status bits

...

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

mov reg1, reg2

add reg1, 0x42

push reg1

call func

…

in reg1

…

mov reg2, reg1

xor reg3, reg3

add reg4, reg1

push reg3

push reg2

…

1

2

3

4

…

10

…

20

21

22

23

24

…

Inst.

Count

Instruction

Stream

Int

replay

Operating Systems Group

Department of Computer Science
13

Run Time Overhead

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

22%

13%

3%

12%

6%

30%

3% 4%

17%

1% 1%
4%

3% 2%
0

5

10

15

20

25

30

35

ap
ac

he

gn
up

g

ke
rn

el
 b

ui
ld

la
m

e

ph
pb

en
ch

po
st
m

ar
k

po
vr

ay

py
be

nc
h

S
lo

w
d

o
w

n
 [
%

]

Recording
Checkpointing

Interval: 1s

Memory: 4 GiB

Operating Systems Group

Department of Computer Science
14

Naive Simulation Startup

1) Nodes request checkpoints from central server

2) Load entire checkpoint into memory

3) Start simulation of interval

But: Central server becomes bottleneck

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

Virtualization

Node 1

Node 2

Node 3

Node 4
Bottleneck

DB

4 3
2

1Pages Checkpoint

Operating Systems Group

Department of Computer Science
15

Simulation Startup

Only send new data

Deduplicate and compress data

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

Linux Kernel Build SPECjbb2005

22000 pages/s (85 MiB/s) 53000 pages/s (200 MiB/s)

5000 pages/s (20 MiB/s) 16000 pages/s (65 MiB/s)

Virtualization

Node 1

Node 2

Node 3

Node 44

3

2

1
Pages

Local

DBs

Multicast

Gigabit Ethernet

Operating Systems Group

Department of Computer Science
16

Simulation Startup

Only send new data

Only load pages that will be accessed in interval

Load time: 2s 200ms Memory consumption: 4GiB <500MiB

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

Loading time (>2s)

Increase simulation density

Virtualization

Node 1

Node 2

Node 3

Node 44

3

2

1
Pages

Local

DBs

Multicast

Operating Systems Group

Department of Computer Science
17

Performance Model

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

Want: Optimal interval length

Input

Workload run time without SimuBoost

Virtualization overhead (slowdown, downtime)

Simulation overhead (slowdown incl. analysis, startup time)

Output

Parallel simulation time

Speedup

Differentiation

 Optimal interval length

Linux Kernel Build

S
p
e
e

d
u
p

Interval Length [s]

Operating Systems Group

Department of Computer Science
18

Evaluation

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

1,5 1,5 1,8 2,1 1,2 2,2 3,0 1,4

31,8

63,7

41,5

16,1

53,6
47,8

78,2

0

10

20

30

40

50

60

70

80

90

100

SimuBoost Serial Simulation

230

S
lo

w
d

o
w

n
 (

F
a
c
to

r)

Baseline: Hardware-assisted virtualization without SimuBoost

Operating Systems Group

Department of Computer Science
19

Conclusion

Slowdown of functional full system simulation: >100x

SimuBoost: Accelerate simulation

Run workload with fast virtualization

Take checkpoints in regular intervals

Start parallel simulations on checkpoints

Contribution

Drastically reduces slowdown (e.g., 230x 3x)

Enables interactivity (users and network)

Moderate probe effect

Run time overhead on average 40%

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

SimuBoost: Functional full system simulation made practical

t

HW-assist.

Virtualization
[1]

Node 1

[2] [n]

Node 2

Node n

Node V

Parallel

Simulation

[n]

[2]

[1]

Operating Systems Group

Department of Computer Science
20

Evaluation Raw Data

apache kernel build lame gnupg phpbench postmark povray pybench

HW Time 166,1 439 37,5 21,66 271 38,7 611 33,78

HW SimuBoost 225 554 66 27 306 82 669 43

Overhead 1,35 1,26 1,76 1,25 1,13 2,12 1,09 1,27

Parallel Time 247 665 68 45 337 86 1857 47

Serial Time 5280 27957 1556 349 14528 1851 141202 2640

SimuBoost 1,5 1,5 1,8 2,1 1,2 2,2 3,0 1,4

Serial Simulation 31,8 63,7 41,5 16,1 53,6 47,8 231,1 78,2

Speedup 21,4 42,0 22,9 7,8 43,1 21,5 76,0 56,2

Nodes 28 64 42 16 53 40 88 78

Interval Length [ms] 200 230 65 100 145 100 120 45

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

Operating Systems Group

Department of Computer Science
21

Source of Sawtooth

Node 1

Node 2

i [4]i [1] i [7]

Node 3

i [5]i [2]

i [6]i [3]

Tps

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

Linux Kernel Build

S
p
e
e
d
u
p

Interval Length [s]

Operating Systems Group

Department of Computer Science
22

Stop-And-Copy Checkpointing

Device states: 1 – 3 ms

Guest physical memory

Dominates downtime

Downtime depends on VM size

 Not suited for interactive use

 Impairs parallelization

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

98 171
329

639

1186

2069

4001

12% 22% 43% 86% 183% 294% 534%

100

500

1000

1500

2000

2500

3000

3500

4000

4500

256 512 1024 2048 4096 8192 16384

Memory Size [MiB]

D
o

w
n
ti
m

e
 [
m

s
]

Build Linux Kernel (1s)

suspended

[k] [k+1]

Downtime

HW-assist.

Virtualization

Slowdown

Operating Systems Group

Department of Computer Science
23

Selected Previous Research

Workload Reduction

MinneSPEC [KleinOsowski02]

Simulate samples and extrapolate

Truncated Execution

SimPoints [Sherwood02]

SMARTS [Wunderlich03]

Improve simulation engine

Optimize engine: below 5x speedup mark

Parallelize simulation of vCPUs [Ding11]

Divide simulation time

For microarchitectural simulations: DiST [Girbal03]

SuperPin

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

Operating Systems Group

Department of Computer Science
24

References

[Miller13] K. Miller et al. XLH: More effective memory deduplication scanners through cross-layer hints. USENIX, 2013

[Wilhelm15] F. Wilhelm. Tracing Privileged Memory Accesses to Discover Software Vulnerabilities. Master Thesis, KIT,
2015

[Jurczyk13] M. Jurczyk et al. Bochspwn: Exploiting Kernel Race Conditions Found via Memory Access Patterns. 2013

[Rittinghaus13] M. Rittinghaus. SimuBoost: Scalable Parallelization of Functional System Simulation. WODA, 2013

[Weil06] S. A. Weil at al. Ceph: A Scalable, High-Performance Distributed File System. OSDI, 2006

[Bellard05] F. Bellard. Qemu: A Fast and Portable Dynamic Translator. USENIX, 2005

[Magnusson02] P. Magnusson et al. Simics: A Full System Simulation Platform. Computer, 35(2), 2002

[Sherwood02] T. Sherwood et al. Automatically Characterizing Large Scale Program Behavior. ACM SIGARCH, 30(5),
2002

[Ding11] J. Ding et al. PQEMU: A Parallel System Emulator Based on QEMU. ICPADS, 2011

[Wunderlich03] R. E. Wunderlich et al. SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statistical
Sampling. Computer Architecture, 2003

[Girbal03] S. Girbal et al. DiST: A Simple, Reliable and Scalable Method to Significantly Reduce Processor
Architecture Simulation Time. SIGMETRICS, 31(1), 2003

[KleinOsowski02] A. J. KleinOsowski et al. MinneSPEC: A New SPEC Benchmark Workload for Simulation-Based
Computer Architecture Research. IEEE Computer Architecture Letters 1.1, 2002

[Sheldon07] M. Sheldon et al. Retrace: Collecting Execution Trace With Virtual Machine Deterministic Replay. MoBS,
2007

[Yan12] L. Yan et al. V2E: Combining Hardware Virtualization and Software Emulation for Transparent and Extensible
Malware Analysis. VEE, 2012

[RbMiller68] Robert B. Miller. Response Time in Man-Computer Conversational Transactions. 1968.

Marc Rittinghaus - SimuBoost

