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Motivation

Study properties of redundant memory contents [Miller13]

Origin? Lifetime? Sharing possible?

Analyze memory contents after each modification

But: Analysis should not affect workload

Analyze memory access patterns on system interfaces [Jurczyk13, Wilhelm15]

Detect vulnerabilities in Windows 8 and Xen (CVE-2015-8550) 

Trace individual memory reads and writes

Marc Rittinghaus, Frank Bellosa
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We want detailed runtime information
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Motivation

Functional full system simulation

Allows collecting required data

Simulation on instruction-level

Includes operating system and drivers

But: It is slow

Virtualization Simulation

KVM QEMU Simics

~ 1x ~ 100x ~ 1000x
Average slowdowns for: kernel build, SPECint_base06, LAMMPS

• Not practical for long-running workloads

• Loss of interactivity (users and remote hosts)

Marc Rittinghaus, Frank Bellosa
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SimuBoost

Use virtualization and split execution into intervals

Checkpoints at interval boundaries bootstrap simulations

Speed difference drives parallelization

Hardware acceleration provides full interactivity

Does not trade accuracy for speed

Scales with run time of workload

Marc Rittinghaus, Frank Bellosa
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Challenges
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Downtime to capture consistent state

Keep below 100ms to preserve interactivity [RbMiller68]

Run time overhead to asynchronously save data

Keep low to minimize probe effect

Lightweight 

Checkpointing
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Challenges
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Replay of events

Must have instruction-level precision

Run time overhead to capture non-deterministic events

Keep low to minimize probe effect

Lightweight 

Checkpointing

Deterministic

Replay
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Challenges
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Startup time: Transfer time + Checkpoint loading time

Keep low to maximize speedup

Network bandwidth to migrate checkpoints

Keep low to allow commodity network infrastructure (Gigabit Ethernet)
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Challenges
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Checkpointing

Problem: Cannot save full guest memory on each checkpoint

Observation: Only some data modified per interval

Dirty Page Tracking

Standard: Use page protections

Better: Scan extended page table (EPT)

Less page faults: ½ run time overhead, but 2x downtime

Pre-Scan keeps downtime low

Copy-On-Write (CoW)

Protect modified pages (only)

Asynchronously copy pages

Marc Rittinghaus, Frank Bellosa
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Linux Kernel Build SPECjbb2005

22000 pages/s (85 MiB/s) 53000 pages/s (200 MiB/s)
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Checkpointing II

Marc Rittinghaus, Frank Bellosa
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Baseline: Simple Stop-And-Copy (4GiB VM)

Downtime: 1.2s

Run time overhead: ~3x
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Checkpointing II

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

Baseline: Simple Stop-And-Copy (4GiB VM)

Downtime: 1.2s

Run time overhead: ~3x
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Deterministic Replay

Synchronous events (cpuid, rdtsc, port I/O, …)

Trap & record <value>

Replay value in simulation

Asynchronous events (interrupts, DMA)

Trap & record <landmark, value>

Landmark: Instruction counter + CPU registers

Inject event at landmark (e.g., raise interrupt)

Improve accuracy of simulation

Match instruction counting with hardware

Implement “undefined” status bits

...

Marc Rittinghaus, Frank Bellosa
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Run Time Overhead

Marc Rittinghaus, Frank Bellosa

Fast and Accurate Functional Simulation for Dynamic Full System Analysis

22%

13%

3%

12%

6%

30%

3% 4%

17%

1% 1%
4%

3% 2%
0

5

10

15

20

25

30

35

ap
ac

he

gn
up

g

ke
rn

el
 b

ui
ld

la
m

e

ph
pb

en
ch

po
st
m

ar
k

po
vr

ay

py
be

nc
h

S
lo

w
d

o
w

n
 [
%

]

Recording
Checkpointing

Interval: 1s

Memory: 4 GiB



Operating Systems Group

Department of Computer Science
14

Naive Simulation Startup

1) Nodes request checkpoints from central server

2) Load entire checkpoint into memory

3) Start simulation of interval

But: Central server becomes bottleneck

Marc Rittinghaus, Frank Bellosa
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Simulation Startup

Only send new data

Deduplicate and compress data
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Linux Kernel Build SPECjbb2005

22000 pages/s (85 MiB/s) 53000 pages/s (200 MiB/s)

5000 pages/s (20 MiB/s) 16000 pages/s (65 MiB/s)
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Simulation Startup

Only send new data

Only load pages that will be accessed in interval

Load time: 2s      200ms Memory consumption: 4GiB      <500MiB

Marc Rittinghaus, Frank Bellosa
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Loading time (>2s)

Increase simulation density

Virtualization

Node 1

Node 2

Node 3

Node 44

3

2

1
Pages

Local

DBs

Multicast



Operating Systems Group

Department of Computer Science
17

Performance Model
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Want: Optimal interval length

Input

Workload run time without SimuBoost

Virtualization overhead (slowdown, downtime)

Simulation overhead (slowdown incl. analysis, startup time)
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Parallel simulation time
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Evaluation
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Conclusion

Slowdown of functional full system simulation: >100x

SimuBoost: Accelerate simulation

Run workload with fast virtualization

Take checkpoints in regular intervals

Start parallel simulations on checkpoints

Contribution

Drastically reduces slowdown (e.g., 230x      3x)

Enables interactivity (users and network)

Moderate probe effect

Run time overhead on average 40%

Marc Rittinghaus, Frank Bellosa
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SimuBoost: Functional full system simulation made practical
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Evaluation Raw Data

apache kernel build lame gnupg phpbench postmark povray pybench

HW Time 166,1 439 37,5 21,66 271 38,7 611 33,78

HW SimuBoost 225 554 66 27 306 82 669 43

Overhead 1,35 1,26 1,76 1,25 1,13 2,12 1,09 1,27

Parallel Time 247 665 68 45 337 86 1857 47

Serial Time 5280 27957 1556 349 14528 1851 141202 2640

SimuBoost 1,5 1,5 1,8 2,1 1,2 2,2 3,0 1,4

Serial Simulation 31,8 63,7 41,5 16,1 53,6 47,8 231,1 78,2

Speedup 21,4 42,0 22,9 7,8 43,1 21,5 76,0 56,2

Nodes 28 64 42 16 53 40 88 78

Interval Length [ms] 200 230 65 100 145 100 120 45

Marc Rittinghaus, Frank Bellosa
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Source of Sawtooth
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Stop-And-Copy Checkpointing

Device states: 1 – 3 ms

Guest physical memory

Dominates downtime

Downtime depends on VM size

 Not suited for interactive use

 Impairs parallelization

Marc Rittinghaus, Frank Bellosa
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Selected Previous Research

Workload Reduction

MinneSPEC [KleinOsowski02]

Simulate samples and extrapolate

Truncated Execution

SimPoints [Sherwood02]

SMARTS [Wunderlich03]

Improve simulation engine

Optimize engine: below 5x speedup mark

Parallelize simulation of vCPUs [Ding11]

Divide simulation time

For microarchitectural simulations: DiST [Girbal03]

SuperPin

Marc Rittinghaus, Frank Bellosa
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