A Formal Modeling Framework for Dependable and
Portable Embedded Operating Systems

Renata Martins Gomes and Marcel Baunach, TU Graz

Current approaches for portability of real-time operating systems (RTOSs)
for embedded systems are largely based on manual coding, which is arduous
and error prone. With increasing dependability requirements for cyber phy-
sical systems, specially within the Internet of Things (IoT), along with the
expected great diversity of hardware platforms, software platforms will on-
ly remain competitive in the long run if they guarantee correct operation
and easy deployment to every hardware platform. In this scenario, a new ap-
proach to the development and portability of RT'OSs that guarantees correct
implementations for all current and future devices and hardware architectu-
res becomes indispensable.

We present a framework for automatic RT'OS portability that integrates
model-based design and formal methods into dependable embedded software
development. First, we model the RT'OS considering an abstract hardware.
The model includes the interaction with the hardware, such as interrupt
handling and context switches, but remains generic until the RTOS is com-
pletely modeled. Then, we refine the model into a hardware-concrete model
for each target architecture. The hardware-concrete models only instantiate
some hardware details and specify actions left under-specified in the model,
and do not require much effort to be complete. From the hardware-concrete
models, we can prove the RTOS’s design, generating proofs that the model
fulfills its functional and non-functional requirements.

The generator we are developing serves as a bridge between the formal
language and programing languages, using the formal software models to ge-
nerate target-specific code. The automatic code generation guarantees that
the model is correctly translated to machine language, avoiding implementa-
tion mistakes common to manual coding. Changes on the software, for bug
fixes or testing of new concepts, for example, do not require knowledge of the
target architectures, since they are done on the model and are immediately
reflected in all implementations upon code generation, assuring consistency
across platforms.



