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Embedded systems must support regular software updates, due to changes
in legal regulations, improved algorithms, bug/security fixes, etc. Currently,
most embedded systems only support updates through full image replace-
ment. This image is a monolithic software statically built,i.e., all pieces of
software are integrated at build time. This approach has several disadvan-
tages, such as the need to rebuild the full software even when only a small
portion is modified, and the need to stop the functionality and reboot the
device upon updates, which is unacceptable on many (safety-)critical ap-
plications, e.g., in medical or nuclear fields. In this paper, we present the
modular architecture used in MCSmartOS, and how it supports dynamic
updates at module level. This is a first step to enable automatic integration
on embedded devices, i.e, to receive a piece of software and incorporate it into
the running system. However, many embedded devices are classified as “de-
pendable systems”, which must satisfy a set of functional and non-functional
properties (FPs/NFPs) w.r.t. real-time, safety, security, and maintainabi-
lity. Thus, before integrating a new module into the software stack, it is
necessary to ensure that the target device will still satisfy all required pro-
perties after the update. Therefore, the automatic integration must include
a pre-validation, called Compatibility Check (CC). The CC performs va-
rious operations: from simple ones, such as checking if a device has enough
memory to store the new software, to complex NFP checks, such as schedu-
lability analysis and deadlock detection. Due to the wide range of concepts
involved in the CC, it is unfeasible to cover it in this work. It will be ins-
tead discussed in future publications. Some of the CC’s operations require
so much performance or memory that many embedded devices cannot afford
to execute them. Hence, we also present a client-server update protocol that
distributes update operations between the embedded devices (clients) and
high-performance servers that provide the updates. This way, we are able to
dynamically update embedded devices of different performance classes: the
more resource-constrained a device is, the more operations it outsources to
the server.


