
Towards Automatic SW Integration in Dependable
Embedded Systems

Leandro Batista Ribeiro and Marcel Baunach, TU Graz

Embedded systems must support regular software updates, due to changes
in legal regulations, improved algorithms, bug/security fixes, etc. Currently,
most embedded systems only support updates through full image replace-
ment. This image is a monolithic software statically built,i.e., all pieces of
software are integrated at build time. This approach has several disadvan-
tages, such as the need to rebuild the full software even when only a small
portion is modified, and the need to stop the functionality and reboot the
device upon updates, which is unacceptable on many (safety-)critical ap-
plications, e.g., in medical or nuclear fields. In this paper, we present the
modular architecture used in MCSmartOS, and how it supports dynamic
updates at module level. This is a first step to enable automatic integration
on embedded devices, i.e, to receive a piece of software and incorporate it into
the running system. However, many embedded devices are classified as “de-
pendable systems”, which must satisfy a set of functional and non-functional
properties (FPs/NFPs) w.r.t. real-time, safety, security, and maintainabi-
lity. Thus, before integrating a new module into the software stack, it is
necessary to ensure that the target device will still satisfy all required pro-
perties after the update. Therefore, the automatic integration must include
a pre-validation, called Compatibility Check (CC). The CC performs va-
rious operations: from simple ones, such as checking if a device has enough
memory to store the new software, to complex NFP checks, such as schedu-
lability analysis and deadlock detection. Due to the wide range of concepts
involved in the CC, it is unfeasible to cover it in this work. It will be ins-
tead discussed in future publications. Some of the CC’s operations require
so much performance or memory that many embedded devices cannot afford
to execute them. Hence, we also present a client-server update protocol that
distributes update operations between the embedded devices (clients) and
high-performance servers that provide the updates. This way, we are able to
dynamically update embedded devices of different performance classes: the
more resource-constrained a device is, the more operations it outsources to
the server.


