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Huawei Dresden Research Center

Focusing on microkernel R&D

Fundamental and applied research, design and prototype development

Topics ranging anywhere from formal verification to scalability

Collaboration with academia and other technology companies

Shaping the future product portfolio of Huawei

Grown from 0 to 18 researchers/developers during 2019

Just moving to a shiny new office in the city center of Dresden

The plan is to restart hiring next year
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Motivation: OS Design Space
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Motivation: OS Design Space
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Problem Statement

There is no “one-size-fits-all” operating system design

Endless debates whether monolithic kernels or microkernels are “better” 
are pointless

Better with respect to what?
Specific input (domain) requirements
Specific mix of desired trade-offs

Operating system design tends to be a “big upfront” decision

Whether we go with an extreme design or a hybrid design, the design 
decisions affect the code base in a major way

Switching to a different design during implementation
usually means a major rewrite of the code base



9Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Problem Statement (2)

Possible reasons for the rigidity of the operating system design

Need to deal with relatively tedious low-level abstractions and mechanisms 
in an efficient manner (context switching, memory management, isolation, 
communication)

Need to have several major mechanisms as “singletons” (no way of having 
multiple implementations coexist side-by-side)

Historically relatively basic toolchain support (C language, no explicit way of 
capturing the software architecture as formal artifacts)

Need for a stable API (not too many “moving parts” on the side of 
applications), compatibility with ancient APIs (e.g. POSIX)

Long way from a “toy OS” to a “real-world OS”
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Flexible OS Architecture

Goal

Providing an almost continuous spectrum of tunability between 
isolation/performance, component granularity and deployment modes 
[1]

By the same code base

Key aspects

Fundamental theory

Generic framework, tools and formalisms

Individual mechanisms
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Fundamental Theory

Baseline design

Initial “rigid” design of the operating system code base
(i.e. an actual working operating system implementation)

Observation: The more componentized (modular) the code base is
the more suitable it is for achieving flexibility

Fine-grained microkernel multiserver baseline design is ideal

The usual anxiety from performance overhead is completely subverted
The whole point is to automatically merge fine-grained components into coarse-
grained components if performance is essential

Fine-grained baseline design keeps all the benefits for the formal 
verification of correctness, etc.



12Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Fundamental Theory (2)

Deployment design

Target run-time architecture of the operating system

Defined by the input (domain) requirements and
the desired mix of trade-offs

Achieved from the baseline design using mutators
(mechanisms for changing the design)

Goal: Keeping end-user applications (both clients and servers)
as unaffected as possible by the mutations (on the level of API)
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Basic Mutation
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Concrete Mechanisms

Link-time approach

Introducing mutators in the form of replacement code for the IPC mechanisms

Original client-side and server-side business logic stays unaffected

Additional isolation checks (if required) are introduced in the replacement code

When merging components, symbol renaming is used to mitigate namespace 
collisions

Benefits: Non-intrusive, support for binary-only (closed-source) components, 
covering a fair portion of the OS design space

Drawbacks: Some performance overhead cannot be fully eliminated

First prototype implemented on top of HelenOS
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Other Aspects

Architecture Description Language

Formal description the baseline design (component interfaces, bindings 
and dependencies)

Deployment Specification Language

Formal description of the deployment design

Capturing input (domain) requirements and the desired mix of trade-offs

Performance engineering and modeling

Semi-automatic derivation of the optimal mix of trade-offs
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Conclusion

There is no “one-size-fits-all” operating system design

Operating system design tends to be a “big upfront” decision

Flexible OS architecture aims at changing the fundamental paradigm

Baseline design vs. deployment design

Starting ideally with a fine-grained baseline design

Subverting the usual anxiety from performance overhead of microkernels

Initial results very promising
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Q&A



Thank You!
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