
Flexible Operating System Architecture
Martin Děcký 

martin.decky@huawei.com 

November 2019



2Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Huawei Dresden Research Center

Focusing on microkernel R&D

Fundamental and applied research, design and prototype development

Topics ranging anywhere from formal verification to scalability

Collaboration with academia and other technology companies

Shaping the future product portfolio of Huawei

Grown from 0 to 18 researchers/developers during 2019

Just moving to a shiny new office in the city center of Dresden

The plan is to restart hiring next year



3Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Motivation: OS Design Space



4Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Motivation: OS Design Space

fine-grained
components

monolithic
components



5Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Motivation: OS Design Space

fine-grained
components

monolithic
components

safety via
isolation

raw
performance



6Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Motivation: OS Design Space

fine-grained
components

monolithic
components

safety via
isolation

raw
performance

static
deployment

dynamic
deployment



7Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Motivation: OS Design Space

fine-grained
components

monolithic
components

safety via
isolation

raw
performance

static
deployment

dynamic
deployment

microkernel
multiserver OS

microkernel
single server OS

monolithic
kernel OS

unikernel
OS separation

kernel

hypervisor



8Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Problem Statement

There is no “one-size-fits-all” operating system design

Endless debates whether monolithic kernels or microkernels are “better” 
are pointless

Better with respect to what?
Specific input (domain) requirements
Specific mix of desired trade-offs

Operating system design tends to be a “big upfront” decision

Whether we go with an extreme design or a hybrid design, the design 
decisions affect the code base in a major way

Switching to a different design during implementation
usually means a major rewrite of the code base



9Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Problem Statement (2)

Possible reasons for the rigidity of the operating system design

Need to deal with relatively tedious low-level abstractions and mechanisms 
in an efficient manner (context switching, memory management, isolation, 
communication)

Need to have several major mechanisms as “singletons” (no way of having 
multiple implementations coexist side-by-side)

Historically relatively basic toolchain support (C language, no explicit way of 
capturing the software architecture as formal artifacts)

Need for a stable API (not too many “moving parts” on the side of 
applications), compatibility with ancient APIs (e.g. POSIX)

Long way from a “toy OS” to a “real-world OS”



10Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Flexible OS Architecture

Goal

Providing an almost continuous spectrum of tunability between 
isolation/performance, component granularity and deployment modes 
[1]

By the same code base

Key aspects

Fundamental theory

Generic framework, tools and formalisms

Individual mechanisms



11Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Fundamental Theory

Baseline design

Initial “rigid” design of the operating system code base
(i.e. an actual working operating system implementation)

Observation: The more componentized (modular) the code base is
the more suitable it is for achieving flexibility

Fine-grained microkernel multiserver baseline design is ideal

The usual anxiety from performance overhead is completely subverted
The whole point is to automatically merge fine-grained components into coarse-
grained components if performance is essential

Fine-grained baseline design keeps all the benefits for the formal 
verification of correctness, etc.



12Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Fundamental Theory (2)

Deployment design

Target run-time architecture of the operating system

Defined by the input (domain) requirements and
the desired mix of trade-offs

Achieved from the baseline design using mutators
(mechanisms for changing the design)

Goal: Keeping end-user applications (both clients and servers)
as unaffected as possible by the mutations (on the level of API)



13Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Basic Mutation

Push down to kernel space

client

kernel

IPC

serverclient

kernel

IPC

server

user space

kernel space

syscall

direct call
upcall



14Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Basic Mutation

Push down to kernel space

client

kernel

IPC

serverclient

kernel

IPC

server client

kernel

IPC server

user space

kernel space

syscall

direct call
upcall





15Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Concrete Mechanisms

Link-time approach

Introducing mutators in the form of replacement code for the IPC mechanisms

Original client-side and server-side business logic stays unaffected

Additional isolation checks (if required) are introduced in the replacement code

When merging components, symbol renaming is used to mitigate namespace 
collisions

Benefits: Non-intrusive, support for binary-only (closed-source) components, 
covering a fair portion of the OS design space

Drawbacks: Some performance overhead cannot be fully eliminated

First prototype implemented on top of HelenOS



16Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Other Aspects

Architecture Description Language

Formal description the baseline design (component interfaces, bindings 
and dependencies)

Deployment Specification Language

Formal description of the deployment design

Capturing input (domain) requirements and the desired mix of trade-offs

Performance engineering and modeling

Semi-automatic derivation of the optimal mix of trade-offs



17Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Conclusion

There is no “one-size-fits-all” operating system design

Operating system design tends to be a “big upfront” decision

Flexible OS architecture aims at changing the fundamental paradigm

Baseline design vs. deployment design

Starting ideally with a fine-grained baseline design

Subverting the usual anxiety from performance overhead of microkernels

Initial results very promising



18Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

Acknowledgements

Huawei Dresden Research Center

Martin Beck

Sebastian Ertel

Ming Fu

Pramod Bhatotia

Huawei OS Kernel Lab

Yu Li

Haibo Chen



19Martin Děcký, November 22nd 2019 Flexible Operating System Architecture

References

[1] Děcký M.: Application of Software Components in Operating System 
Design, doctoral thesis, Charles University, 2015

[2] Polakovic J., Ozcan A. E., Stefani J.-B.: Building Reconfigurable 
Component-based OS with THINK, in the Proceedings of the 32nd 
EUROMICRO Conference on Software Engineering and Advanced 
Applications, IEEE, 2006



Martin Děcký, November 22nd 2019 Flexible Operating System Architecture 20

Q&A



Thank You!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

