Efficient Checkpointing in Byzantine
Fault-Tolerant Systems

November 22, 2019

Michael Eischer, Tobias Distler

Friedrich-Alexander Universitat Erlangen-Niirnberg (FAU)

Supported by

= FRIEDRICH-ALEXANDER
= UNIVERSITAT _
ERLANGEN-NURNBERG

grant no. DI 2097/1-2 (“REFIT")

Byzantine Fault-Tolerant State-Machine Replication

— Beplication libralﬂ — I —
)
(lient)~ Ra[| agreement | J==[[ITTTIT]—= Application

protocol

Client - Ry — [[TITTTT]— | Application

i ptcation) - CEEEED - (Foplation]

m Replicate service for fault tolerance

Application state

» Tolerate Byzantine (arbitrary) faults
[0.][0.]|os][o. o5]

m Application state consists of
objects O; with unique object IDs

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 1

Request Processing

Request Check-
execution pointing
R1 Ol | 01,03 | 03 |Ol 01,...,05

R, 0,]04,05]05]|0, 0,,...,05
R;[0.]0,,05]03]0, 04,..,05
R4 01|01,03 |O3 |01 Ol,...,O5
time —

m Keep requests to tolerate faults

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 2

Request Processing

Request Check- Request Check-
execution pointing execution pointing
Rl Ol|olro3|o3|ol Olr'"roS 02103|01|05|01705 Olr'"ro5

R, [02]0:,05]05]0:] 02,05 [0,,05]02]05]0:,05] 01,.,05
R; [0,]05,05]05]0,] 01,405 |02,05]0:]05]05,05] 04,.,05

R4 01|01,03|O3|01 Ol,...,OS 02,03|01|05|01,05 Ol,...,OS
time —

m Keep requests to tolerate faults
m Collect garbage after checkpoint
m Create checkpoints at fixed interval

Efficient Checkpointing in Byzantine Fault-Tolerant Systems

Request Processing

Request Check- Request Check-
execution pointing execution pointing
R, 0.]/04,05]05]|0, 04,...,05 0,,05]0,]05]04,05 04,...,05

R, [02]0:,05]05]0:] 01,.,05 [0,,05]02]05]0:,05] 01,.,05
R; [0,]05,05]05]0,] 01,..05 |02,05]0:]05]0,,05] 01,405

R, [0.]0,,05]03]0 04,-..,05 0,,03]0,]05]0,,05 04,..,05 ¥¥
time —

SRNRNRN

Keep requests to tolerate faults

Collect garbage after checkpoint

Create checkpoints at fixed interval
Unverified checkpoint might be corrupted
— Check for f + 1 identical checkpoint hashes

Efficient Checkpointing in Byzantine Fault-Tolerant Systems

State of the Art

Full Checkpointing

Request execution|Checkpointing] Request execution |Checkpointing
Ri[0:] 01,05 [05]0:1] 03,05 0,,05 [0,]0s] 04,05 01,405

R2[04] 01,05 [03]0s] 04,05 0,,05 [0,]05] 01,05 01,.,05
R3[0.] 01,05 [05]0, 04,...,05 0,,0; [0,]0s] 04,05 04,...,05
R,[0:1] 01,05 [05]0s| 01,..,05 0,,03 [0.]05] 01,05 01,..,.05
time —>

m Copy every object
m Stop the world: Identical checkpoints

m Service not available during checkpointing

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 3

State of the Art

Differential Checkpointing*

Request execution|Checkp.] Request execution |Checkpointing
R:[0.] 01,05 [05]0,] 01,05 | 0,05 [0:]0s] 04,05 | 01,05,05,05

R2[0:] 01,05 [03]0:] 01,05 | 05,05 [01[0s] 04,05 | 01,0,,05,05
R3[01] 01,05 [05]0; | 05,05 | 02,05 [0:]0s] 01,05 | 01,0,05,05
R, [01] 01,05 [05]0:] 01,05 | 05,05 [0:]0s] 04,05 | 01,0,,03,05
time —»

m Only copy changed objects
m Merge with full checkpoint afterwards
m Large objects / expensive state-retrieval still problematic

1Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance and
Proactive Recovery”. In: ACM Trans. on Computer Systems 20.4 (2002), pp. 398-461.

Efficient Checkpointing in Byzantine Fault-Tolerant Systems A

State of the Art

Hybrid Checkpointing?

Request execution |Checkpointing|Request execution| |Request execution

R1 Ol| 0,,03 |O3|O1 04,..,05 02,O3|01|O5 |01,O5 O3| 0,,0,4 |O2|04
R,[0:] 01,05 [05]0:| 01,405 [02,05]01]05[04,05[[05] 02,0: [0,]0.
R3[0:] 01,05 [05]0:| 01,405 [02,05]01[05[01,05[[05] 02,01 [0,]0.
R,[0:] 01,05 [05]0:| 01,405 [02,05]01[05[01,05[[05] 02,0: [0,]0.
time —~ G G

Checkpointing Checkpointing

m Infrequent full checkpoints

m Combine with log of requests

m Reexecution of request log for checkpoint application
= Requests causing failures could trigger these again

2Allen Clement et al. “UpRight Cluster Services”. In: Proc. of the 22nd Symp. on
Operating Systems Principles. 2009, pp. 277-290.

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 5

State of the Art

Sequential Checkpointing?

|Checkp.] Request execution |Checkp.| Request execution
R[] [LITTTTTTTTITTTT [T
Ro[TTTTT] [[TTTTTTTTTITTTT] [[TTTTTTTT]
R [LTTTTTTTTI [[TTTTITTTTTTTT] [[[[]]
Ro[LLTTTTTTTTTTTTT [LLLTTTTTTTTTTTT I
Request execution ICheckp.I Request execution ICheckp.!

m Full checkpoints at different sequence numbers

m Not directly comparable

m Application of request log to recreate checkpoints
m Verification of checkpoint after state application

3Alysson Bessani et al. “On the Efficiency of Durable State Machine Replication”.
In: Proc. of the 2013 USENIX Annual Technical Conf. 2013, pp. 169-180.

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 6

Challenges

inting Method | Resilience

Efficiency

Full
Differential
Hybrid
Sequential

x 0 NN

X

@)
@)
v

Challenges

Need for Byzantine fault-tolerant checkpointing mechanism that is

= Resilient: Validate checkpoint before applying

= Efficient: Low performance impact

Efficient Checkpointing in Byzantine Fault-Tolerant Systems

Table of Contents

1. Motivation

2. Our Approach: Deterministic Fuzzy Checkpoints

3. Evaluation

4. Summary

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 8

Our Approach:
Deterministic Fuzzy Checkpoints

Deterministic Fuzzy Checkpoints (DFC)

| Fixed checkpoint interval |

— S~
Checkpoint Checkpoint
Request execution , Request execution , Request execution
o LLLLLEE e e e e L L -
1 SC [CC SC [CC
o LLLLLE e e e L L=
2 SC CC SC CC
. [Capture T LTI
31" | modifications f_| CC SC_|ccC
RAIIIIIIIII‘HZESaéEZZICéIIII IIISICIIIICCIIIIII|~-
/. \

State Capture:
Capture fuzzy
snapshot parallel
to execution

Checkpoint Completion:
Make snapshot deterministic

Efficient Checkpointing in Byzantine Fault-Tolerant Systems

State Capture

m Capture state parallel to request execution

m Snapshots differ between replicas

Y

Ri

L] ||0z.=42|01=1|03=®|Oz=5|02=6|01=2 HEENS
SC

CC

Application state

2[5

Fuzzy snapshot
Modification list

Checkpoint

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 10

Checkpoint Completion

m Apply modifications to snapshot

m Creates an identical checkpoint on all replicas
= Snapshot or modification list contain latest version of each object

v, |-

0,=42|0,=1]05=0|0,=5/0,=6|0,=2
SC

CC

Fuzzy snapshot
Modification list

Checkpoint

Checkpoint

Efficient Checkpointing in Byzantine Fault-Tolerant Systems

completion

G

Checkpoint

all,

Capture Timing

m Adapt starting point to finish on time

= Goal: Minimize overhead
= Account for capture time in sequence numbers

= Add buffer time
m Adapt to heterogeneous server performance

\
|
R LTI T8989z [1T 101
SCI CC
[T eedzedzeek g 111110
Ry SC ﬁ{cc

<

Efficient Checkpointing in Byzantine Fault-Tolerant Systems

12

Capture Timing

m Adapt starting point to finish on time

= Goal: Minimize overhead
= Account for capture time in sequence numbers
= Add buffer time

m Adapt to heterogeneous server performance

Adapt to finish
on time

Ry LLLLITTTTEe2zE2e |11 TP T T~
SC|[cC SC TIQ

R, LI zkazedzbazbae] T (11111 Jekazedzegd [TTTT111]-
SC CC ol e

£

Replica-specific Add buffer

starting point

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 12

Variant I: Copy after Write (DFCc,y)

m Replication library has access to

App[ication interface individual state objects

similar to BASE* — Generic snapshot handling

// Request execution m State capture

RESULT invoke(REQUEST r); = Checkpointer thread collects copy
@Callback of all objects

void modified(OBJECTID oid); = Modification list: At checkpoint

sequence number copy final state
of objects modified during state

// Checkpointing capture

BYTE[] object(OBJECTID oid); . .
(1 object(0s;) m Checkpoint completion

= Keep latest version of an object

“Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. “BASE: Using Abstraction to
Improve Fault Tolerance”. In: ACM Trans. on Computer Systems 21.3 (2003)

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 13

Variant II: Updates (DFCypa)

Application interface

// Request execution
[REsuLT, UPDATE] invoke(
REQUEST I,
BOOLEAN createUpd);

m Content of UPDATES and SNAPSHOT
is application-specific
— Fine-grained modification tracking
m State capture

// Checkpointing = Concurrent snapshot creation
SNAPSHOT fuzzy(); = Modification list: Library collects
' list of UPDATES

// Completion m Checkpoint completion
SNAPSHOT complete(= Apply collected UPDATES

SNAPSHOT s, UPDATE[] u);

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 14

Deterministic Differential Fuzzy Checkpoints (DDFC)

) Checkpoint]
Request execution Request executio
[T P PPy
Ry SO SC SO
CC
HEEEEEEEEEEEEEEEEEEEEEE
R, SO SC SO
/ \ CC

Observe changes

- Fuzzy delta snapshot:
when not capturing

Collect objects changed
since last checkpoint

Create Deterministic
Differential

Fuzzy Checkpoint

— Merge with latest full checkpoint for up-to-date full checkpoint

Efficient Checkpointing in Byzantine Fault-Tolerant Systems

15

Evaluation

Evaluation - Full Checkpoints

m Application: Key-value store with in-memory SQLite database
= Application state 3GB (750k objects a 4kb)
= Mixed read/write request on single entry
= Checkpoint approximately every 400k requests

m Four replicas (4 cores, 3.6 GHz)

® 100 client instances on one server (12 cores, 2.4 GHz)

& | >4s service disruption |

~~

g 15 i

<

= 10 W

2

= 5/

£}

o O L L L
= o0 20 40 60 80 100 120
|_

Time [s]
— BFTsy — DFCeaw — DFCupd

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 16

Evaluation - Full Checkpoints

m Application: Key-value store with in-memory SQLite database
= Application state 3GB (750k objects a 4kb)
= Mixed read/write request on single entry
= Checkpoint approximately every 400k requests

m Four replicas (4 cores, 3.6 GHz)

® 100 client instances on one server (12 cores, 2.4 GHz)

| High throughput during state capture |

w DFCcaw <0.7s final
g 15 modification capture
o

4

=10

> WWWWWWW]’”
25

=

on

S o, o
<

I T|me [s]

— BFTfy — DFCeaw — DFCypqg

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 16

Evaluation - Full Checkpoints

m Application: Key-value store with in-memory SQLite database
= Application state 3GB (750k objects a 4kb)
= Mixed read/write request on single entry
= Checkpoint approximately every 400k requests

m Four replicas (4 cores, 3.6 GHz)

® 100 client instances on one server (12 cores, 2.4 GHz)

| High throughput during state capture |

o ‘
~~

o 15 |
2

= 10 W
+—

=)

S 5

on

>

S % 20 40 60 80 100 120
=

'—

Time [s]
— BFTgy — DFCeaw — DFCupd

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 16

Evaluation - Differential Checkpoints

m More than >200k changed objects

& | >1.5s service disruption

~

g 15 |

[a'd

= 10

ras)

a

= 5

%

o 0 1 1 1 1 1
2 © 20 40 60 80 100 120
l_

Time [s]
— BFTg4i — DDFCeaw — DDFCupd

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 17

Evaluation - Differential Checkpoints

m More than >200k changed objects

Small disturbance

E With DDFCCaW

o 15 \

& \

= 10 ’V"\WVGVV/W?

ras)

a

< 20

o)

>

o (0] L L L L L
= (0] 20 40 60 80 100 120
—

Time [s]
— BFTgif — DDFCeaw — DDFCupd

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 17

Evaluation - Differential Checkpoints

m More than >200k changed objects

<0.2s disturbance

@ with DDFCypq
g 15

o

=10 WVWW

ras)

g_

< Of

o)

)

o 0 I I I I I
= (6} 20 40 60 80 100 120
'_

Time [s]
— BFT4if — DDFCeqw — DDFCupd

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 17

Summary

Summary

Checkpointing Method | Resilience | Efficiency
Full v x

Differential v
Hybrid
Sequential X
DFC? v

ENEN

Deterministic Fuzzy Checkpoints
m Fuzzy state capture parallel to execution
m Deterministic checkpoint after completion

Thank you for your attention
Questions?

IMichael Eischer, Markus Biittner, and Tobias Distler. “Deterministic Fuzzy
Checkpoints”. In: Proc. of the 38th Symp. on Reliable Distributed Systems. 2019.

Efficient Checkpointing in Byzantine Fault-Tolerant Systems 18

	Motivation
	Our Approach: Deterministic Fuzzy Checkpoints
	Evaluation
	Summary

