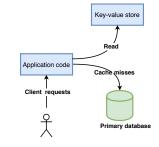
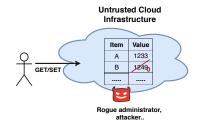


Precursor: A Fast Client-Centric Trusted Key-Value Store Using Intel SGX and RDMA


Ines Messadi, Rüdiger Kapitza, 2019-11-22 messadi@ibr.cs.tu-bs.de Technische Universität Braunschweig, Germany

In-Memory Key-Value Stores

- Key-value stores are core of large-scale services
- Optimized systems can process millions of requests/second
 - Industry: Redis, Memcached,..
 - \rightarrow Lack of basic security guarantees, e.g plaintext key-value items
 - Research: Concerto [SIGMOD'17]
 - \rightarrow Secure but intensive computations and no support of fast networking technologies



Security in the Cloud

- Outsourced to the cloud
- Limited trusted in the cloud provider
- User data is exposed to malicious attacks
- Concerns about privacy & integrity

 \Rightarrow Improvements with trusted execution environments such as Intel Software Guard Extensions (Intel SGX)

Intel SGX Model

- Extension of the x86 instruction set
- Applications have secure compartments \rightarrow **Enclave**
- Code & data reside in Enclave Page Cache (EPC)
- Confidentiality and integrity protected
- Restriction of systems calls and I/O operations

Application			
Enclave			
Operating System			
Hardware			
CPU DRAM EPC			

Approaches for Securing Applications

- SGX SDK: Porting the application \rightarrow Tedious to port
- Shielded execution: Run unmodified applications with Graphene (ATC'17), SCONE (OSDI'16)..
 - ightarrow Secure but large trusted computing base (TCB)
 - \Rightarrow SGX is best suited for programs with small TCB

Address Space				
	Enclave			
	Application Binary			
	LibOS			
ľ				

Approaches for Securing Applications

- SGX SDK: Porting the application \rightarrow Tedious to port
- Shielded execution: Run unmodified applications with Graphene (ATC'17), SCONE (OSDI'16)..
 - ightarrow Secure but large trusted computing base (TCB)
 - \Rightarrow SGX is best suited for programs with small TCB

Address Space			
	Enclave		
	Application Binary		
	LibOS		
		1	

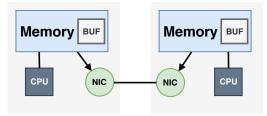
Can we use shielded execution runtime for key-value stores?

Intel SGX Architectural Limitations

- 1. Limited EPC memory
 - Limited to 128 Mibs, only \sim 93 Mibs are usable
 - Secure paging mechanism \rightarrow Overhead up to $\times 1000$ [SCONE, OSDI]
 - ightarrow Cannot protect the full state using the EPC memory!
- 2. System call restriction & enclave transitions
 - Enclave exiting, security checks and TLB flushing
 - ightarrow Performance loss
- 3. New: DMA directly into the enclave are not allowed
 - Copying data in/out of enclaves
 - ightarrow Large copy overhead

Intel SGX Architectural Limitations

- 1. Limited EPC memory
 - Limited to 128 Mibs, only \sim 93 Mibs are usable
 - Secure paging mechanism \rightarrow Overhead up to $\times 1000$ [SCONE, OSDI]
 - \rightarrow Cannot protect the full state using the EPC memory!
- 2. System call restriction & enclave transitions
 - Enclave exiting, security checks and TLB flushing
 - ightarrow Performance loss
- 3. New: DMA directly into the enclave are not allowed
 - Copying data in/out of enclaves
 - ightarrow Large copy overhead


How to secure applications that utilize **Remote Direct Memory Access (RDMA)**?

Data Center Technology: RDMA

- Often employed in data centers
- Zero-copy & kernel bypassing communication
- Applications register memory with RDMA NIC
- Queue-based and asynchronous operations

2019-11-22 | Ines Messadi | Page 7 Fast Client-Centric Trusted Key-Value Store Using Intel SGX and RDMA

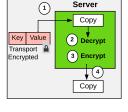
Our Contribution

Precursor: A Fast and Secure Key-Value Store

- \rightarrow Intel SGX to Protect security-sensitive data
- \rightarrow RDMA to achieve high-performance with low-latency

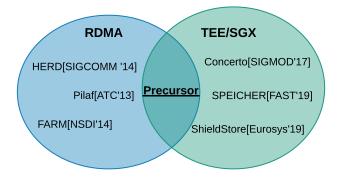
Security Properties

- Confidentiality: unauthorized entities cannot read the data
- Integrity: unauthorized changes to the data can be detected



Related Work: SGX-Based Key-Value Stores

- SPEICHER [FAST '19]
 - Tailored RocksDB implementation
 - Direct I/O library based on SPDK
- ShieldStore [Eurosys'19]
 - Store main data structure in untrusted memory
 - Relies on Merkle Tree for integrity verification
 - ightarrow Potential problems
 - 1. Additional data copy and encryption inside the enclave
 - 2. Extensive server-side computation \rightarrow CPU bottlenecks


Our approach: Client-side encryption to alleviate CPU bottlenecks

Contribution

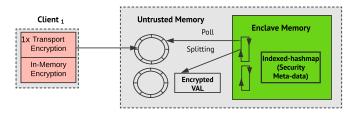
What do we gain from combining both technologies? How to combine them efficiently?

2019-11-22 | Ines Messadi | Page 10 Fast Client-Centric Trusted Key-Value Store Using Intel SGX and RDMA

Threat Model

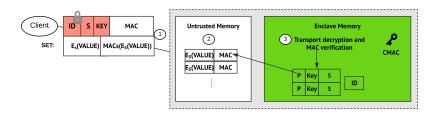
What an adversary can do?

- Tamper with the OS and hardware
- Tamper with key-value data
- Tamper with key-value server code

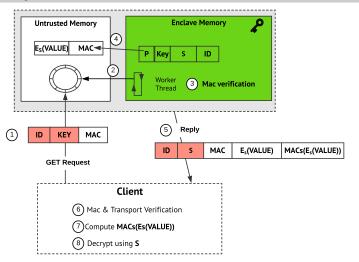

An adversary cannot

- Modify the state within the enclave
- Clients environments are secure

Overall Architecture

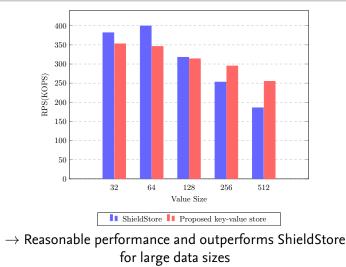

- Offloading cryptographic operations to the client-side
 → Additional scalability
- Splitting approach
 - No copy of the full payload in the enclave
- Flow control scheme
 - Server shares a memory window and regularly updates client

SET Request


- A unique per-operation client encryption key
- Data is placed in the untrusted memory
- Clients pre-compute cryptographic operations

GET Request

2019-11-22 | Ines Messadi | Page 14 Fast Client-Centric Trusted Key-Value Store Using Intel SGX and RDMA


Evaluation Setup

- Workload: Yahoo! Cloud Serving Benchmark (YCSB) [SoCC 2010]
- Update-heavy workload
- Two machines with Intel Xeon E3-1230 v5
- Mellanox RoCE RDMA controller 10 Gbit/s
- Comparison with Shieldstore [Eurosys'19]

Preliminary Results: Throughput

Future Work

- Multi-core scalability
 - Efficient support of Multithreading with fewer synchronization
- Caches of the most popular accessed entries
 - Use of one-sided fetches
- Design of a distributed solution with multiple key-value stores

Conclusion

- A key-value store with strong confidentiality & integrity guarantees
- Contributions
 - Combination of RDMA and Intel SGX
 - Client-side computation
 - ightarrow Leveraging RDMA improves the performance
 - \rightarrow Optimizing for CPU utilization is key

