
Improving Linux-Kernel Tests for
LockDoc with Feedback-driven

Fuzzing

Alexander Lochmann, Robin Thunig,
Horst Schirmeier

alexander.lochmann@tu-dortmund.de
https://ess.cs.tu-dortmund.de/~al

Embedded System Software Group
Computer Science 12, TU Dortmund

mailto:alexander.lochmann@tu-dortmund.de

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 2

● Shift from Big Kernel Lock to a fine-grained
locking scheme [1]
– Reduce lock contention
– Better scaling on multi-core platforms
– Needs good documentation for developers

● Locking Documentation …
– is usually scattered throughout the source

code
– does not use a well-defined syntax
– is ambiguous or even conflicting

Locking the Linux Kernel

→ Inefficiencies, deadlocks, crashes,
silent data corruptions

→ Inefficiencies, deadlocks, crashes,
silent data corruptions

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 3

● Tracks locking pattern and data-structure accesses
● Validates/generates documentation, and locates locking bugs
● Recording performed under a load

– Relies on how system is put under load
– Wants to reach even

remote parts of the code
● LockDoc study [2]

– Focuses on Virtual File System (VFS) subsystem
– Uses filesystem-specific subset of Linux Test Project (LTP)

What is LockDoc?

Alexander Lochmann, Horst Schirmeier, Hendrik Borghorst, and Olaf Spinczyk. 2019. LockDoc: Trace-Based Analysis of Locking in the Linux Kernel. EuroSys‘19.

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 4

● Tracks locking pattern and data-structure accesses
● Validates/generates documentation, and locates locking bugs
● Recording performed under a load

– Relies on how system is put under load
– Wants to reach even

remote parts of the code
● LockDoc study [2]

– Focuses on Virtual File System (VFS) subsystem
– Uses filesystem-specific subset of Linux Test Project (LTP)

What is LockDoc?

Alexander Lochmann, Horst Schirmeier, Hendrik Borghorst, and Olaf Spinczyk. 2019. LockDoc: Trace-Based Analysis of Locking in the Linux Kernel. EuroSys‘19.

→ How much source code is covered?→ How much source code is covered?

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 5

● LTP “validate(s) the reliability, robustness,
and stability of Linux” [3]

● Framework for Linux Kernel Tests via the
System Call Interface

● Collection of manually crafted regression
tests for various subsystems, e.g., IPC, VFS,
scheduling, …

● Individual tests are composed to test suites,
e.g., syscalls

What is the L(inux) T(est) P(roject)?

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 6

● Run test suites related to
VFS

● Measure basic block
coverage

● Linux 4.10
– Total BBs: 342,732
– VFS BBs: 75,531

● Only ~35% of kernel’s
basic blocks are executed
by all VFS-related
testsuites of LTP

Code Coverage by LTP – A Breakdown
Test Suite #Tests Covered

VFS BBs
(%)

dio 30 8312 11.0%

fcntl-
locktests

1 2420 3.2%

filecaps 1 2518 3.3%

fs 65 17495 23.2%

fs_ext4 4 13081 17.3%

fs_perms_
simple

18 5081 6.7%

fsx 1 6572 8.7%

io 2 6817 9.0%

syscalls 1181 24217 32.1%

Total 1302 26229 34.7%

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 7

● Run test suites related to
VFS

● Measure basic block
coverage

● Linux 4.10
– Total BBs: 342,732
– VFS BBs: 75,531

● Only ~35% of kernel’s
basic blocks are executed
by all VFS-related
testsuites of LTP

Code Coverage by LTP – A Breakdown
Test Suite #Tests Covered

VFS BBs
(%)

dio 30 8312 11.0%

fcntl-
locktests

1 2420 3.2%

filecaps 1 2518 3.3%

fs 65 17495 23.2%

fs_ext4 4 13081 17.3%

fs_perms_
simple

18 5081 6.7%

fsx 1 6572 8.7%

io 2 6817 9.0%

syscalls 1181 24217 32.1%

Total 1302 26229 34.7%

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 8

● Run test suites related to
VFS

● Measure basic block
coverage

● Linux 4.10
– Total BBs: 342,732
– VFS BBs: 75,531

● Only ~35% of kernel’s
basic blocks are executed
by all VFS-related
testsuites of LTP

Code Coverage by LTP – A Breakdown
Test Suite #Tests Covered

VFS BBs
(%)

dio 30 8312 11.0%

fcntl-
locktests

1 2420 3.2%

filecaps 1 2518 3.3%

fs 65 17495 23.2%

fs_ext4 4 13081 17.3%

fs_perms_
simple

18 5081 6.7%

fsx 1 6572 8.7%

io 2 6817 9.0%

syscalls 1181 24217 32.1%

Total 1302 26229 34.7%

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 9

● Run test suites related to
VFS

● Measure basic block
coverage

● Linux 4.10
– Total BBs: 342,732
– VFS BBs: 75,531

● Only ~35% of kernel’s
basic blocks are executed
by all VFS-related
testsuites of LTP

Code Coverage by LTP – A Breakdown
Test Suite #Tests Covered

VFS BBs
(%)

dio 30 8312 11.0%

fcntl-
locktests

1 2420 3.2%

filecaps 1 2518 3.3%

fs 65 17495 23.2%

fs_ext4 4 13081 17.3%

fs_perms_
simple

18 5081 6.7%

fsx 1 6572 8.7%

io 2 6817 9.0%

syscalls 1181 24217 32.1%

Total 1302 26229 34.7%

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 10

● Run test suites related to
VFS

● Measure basic block
coverage

● Linux 4.10
– Total BBs: 342,732
– VFS BBs: 75,531

● Only ~35% of kernel’s
basic blocks are executed
by all VFS-related
testsuites of LTP

Code Coverage by LTP – A Breakdown
Test Suite #Tests Covered

VFS BBs
(%)

dio 30 8312 11.0%

fcntl-
locktests

1 2420 3.2%

filecaps 1 2518 3.3%

fs 65 17495 23.2%

fs_ext4 4 13081 17.3%

fs_perms_
simple

18 5081 6.7%

fsx 1 6572 8.7%

io 2 6817 9.0%

syscalls 1181 24217 32.1%

Total 1302 26229 34.7%

→ How can we cover more code?→ How can we cover more code?

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 11

What is syzkaller?
● Coverage-guided kernel fuzzer [4]
● Wants to trigger kernel bugs
● Fuzzes Linux kernel by randomly generating user programs:

int main(void)
{
 syscall(__NR_mmap, 0x1ffff000, 0x1000, 0, 0x32, -1, 0);
 syscall(__NR_mmap, 0x20000000, 0x1000000, 7, 0x32, -1, 0);
 syscall(__NR_mmap, 0x21000000, 0x1000, 0, 0x32, -1, 0);

 (uint32_t)0x20002480 = 0x20000340;
 memcpy((void*)0x20000340, "\x12", 1);
 (uint32_t)0x20002484 = 1;
 (uint32_t)0x20002488 = 0;
 syz_read_part_table(0, 1, 0x20002480);
 return 0;
}

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 12

How does syzkaller work?
Determine Coverage

(run the program)
Determine Coverage

(run the program)

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 13

How does syzkaller work?
Determine Coverage

(run the program)
Determine Coverage

(run the program)

Did it crash?Did it crash?

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 14

How does syzkaller work?
Determine Coverage

(run the program)
Determine Coverage

(run the program)

Did it crash?Did it crash?

Reproduce the crashReproduce the crash

Yes

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 15

How does syzkaller work?
Determine Coverage

(run the program)
Determine Coverage

(run the program)

Did it crash?Did it crash?

New BB covered?New BB covered? Reproduce the crashReproduce the crash

YesNo

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 16

How does syzkaller work?
Determine Coverage

(run the program)
Determine Coverage

(run the program)

Did it crash?Did it crash?

New BB covered?New BB covered? Reproduce the crashReproduce the crash

Store programStore program Discard programDiscard program

YesNo

Yes No

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 17

How does syzkaller work?
Determine Coverage

(run the program)
Determine Coverage

(run the program)

Did it crash?Did it crash?

New BB covered?New BB covered?

Store programStore program Discard programDiscard program

YesNo

Yes No

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 18

How does syzkaller work?
Determine Coverage

(run the program)
Determine Coverage

(run the program)

Did it crash?Did it crash?

New BB covered?New BB covered?

Store programStore program Discard programDiscard program

YesNo

Yes No

… in the VFS ...

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 19

● Linux Kernel 4.10 x86 64-bit
– Without module support
– Minimal configuration: Network support, essential drivers

for root fs and for a paravirtualized environment
● Record executed basic blocks via Vyukov’s KCOV [5]
● Use of LD_PRELOAD to collect covered BBs for a process

hierarchy
● Convert BB to source code via addr2line
● Filtering using regex: /fs/|/mm/|fs\.h|mm\.h

Evaluation Setup

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 20

syzkaller Activity

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 21

● 65-hour run: syzkaller generated 2278 programs
● BB coverage: 10% of whole kernel, 31.4% of VFS
● 9.1% of VFS BBs covered that are not covered by LTP

Results (1)

0

10000

20000

30000

0.0%

10.0%

20.0%

30.0%

40.0%

0 20 40 60
syzkaller Runtime (hours)

C
ov

er
ed

 L
in

ux
−K

er
ne

l B
Bs Percen tage of VFS B Bs

Covered basic blocks
total
in VFS subsystem
in VFS, not covered by LTP

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 22

● Relation between BBs: VFS vs. syzkaller vs. LTP
● Absolute numbers of basic blocks shared among intersecting

sets

Results (2)

VFS
42446 LTP

14083

syzkaller
6090

9332

6856

6100

16897

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 23

● Basic-block coverage of VFS by LTP is limited
● Used modified syzkaller to reach more VFS-related code
● Increased basic-block coverage by 9.1 % to 43.8%
● More observations (mem. accesses/lock ops.) for LockDoc to

analyze → Increased quality
● Outlook

– Use Moonshine [6] approach to improve code coverage
– Generate full-fledged regression tests, sent them back to

LTP?

Summary

Icon Licenses: CC-BY-SA 4.0 / CC0 1.0
Tux: Larry Ewing, CC-BY-SA 4.0

2020-09-24 Improving Linux-Kernel Tests for LockDoc with Feedback-driven Fuzzing 24

[1] Robert Love. 2010. Linux Kernel Development (3rd ed.).

[2]Alexander Lochmann, Horst Schirmeier, Hendrik Borghorst, and Olaf
Spinczyk. 2019. LockDoc: Trace-Based Analysis of Locking in the Linux
Kernel. EuroSys‘19.

[3] https://github.com/linux-test-project/ltp

[4] https://github.com/google/syzkaller

[5]https://www.kernel.org/doc/html/latest/dev-tools/kcov.html

[6]Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine:
Optimizing OS Fuzzer Seed Selection with Trace Distillation. USENIX
Security Symposium 2018.

References

https://github.com/linux-test-project/ltp
https://github.com/google/syzkaller
https://www.kernel.org/doc/html/latest/dev-tools/kcov.html

