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● Shift from Big Kernel Lock to a fine-grained 
locking scheme [1]
– Reduce lock contention
– Better scaling on multi-core platforms
– Needs good documentation for developers

● Locking Documentation …
– is usually scattered throughout the source 

code
– does not use a well-defined syntax
– is ambiguous or even conflicting

Locking the Linux Kernel

→ Inefficiencies, deadlocks, crashes,
silent data corruptions

→ Inefficiencies, deadlocks, crashes,
silent data corruptions
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● Tracks locking pattern and data-structure accesses
● Validates/generates documentation, and locates locking bugs
● Recording performed under a load

– Relies on how system is put under load
– Wants to reach even 

remote parts of the code
● LockDoc study [2]

– Focuses on Virtual File System (VFS) subsystem
– Uses filesystem-specific subset of Linux Test Project (LTP)

What is LockDoc?

Alexander Lochmann, Horst Schirmeier, Hendrik Borghorst, and Olaf Spinczyk. 2019. LockDoc: Trace-Based Analysis of Locking in the Linux Kernel. EuroSys‘19.
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→ How much source code is covered?→ How much source code is covered?
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● LTP “validate(s) the reliability, robustness, 
and stability of Linux” [3] 

● Framework for Linux Kernel Tests via the 
System Call Interface

● Collection of manually crafted regression 
tests for various subsystems, e.g., IPC, VFS, 
scheduling, …

● Individual tests are composed to test suites, 
e.g., syscalls

What is the L(inux) T(est) P(roject)?
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● Run test suites related to 
VFS

● Measure basic block 
coverage 

● Linux 4.10
– Total BBs: 342,732
– VFS BBs:     75,531

● Only ~35% of kernel’s 
basic blocks are executed 
by all VFS-related 
testsuites of LTP

Code Coverage by LTP – A Breakdown
Test Suite #Tests Covered

VFS BBs
(%)

dio 30 8312 11.0%

fcntl-
locktests

1 2420 3.2%

filecaps 1 2518 3.3%

fs 65 17495 23.2%

fs_ext4 4 13081 17.3%

fs_perms_
simple

18 5081 6.7%

fsx 1 6572 8.7%

io 2 6817 9.0%

syscalls 1181 24217 32.1%

Total 1302 26229 34.7%
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→ How can we cover more code?→ How can we cover more code?
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What is syzkaller?
● Coverage-guided kernel fuzzer [4]
● Wants to trigger kernel bugs
● Fuzzes Linux kernel by randomly generating user programs:

int main(void)
{
  syscall(__NR_mmap, 0x1ffff000, 0x1000, 0, 0x32, -1, 0);
  syscall(__NR_mmap, 0x20000000, 0x1000000, 7, 0x32, -1, 0);
  syscall(__NR_mmap, 0x21000000, 0x1000, 0, 0x32, -1, 0);

  *(uint32_t*)0x20002480 = 0x20000340;
  memcpy((void*)0x20000340, "\x12", 1);
  *(uint32_t*)0x20002484 = 1;
  *(uint32_t*)0x20002488 = 0;
  syz_read_part_table(0, 1, 0x20002480);
  return 0;
}
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How does syzkaller work?
Determine Coverage

(run the program)
Determine Coverage

(run the program)
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… in the VFS ...
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● Linux Kernel 4.10 x86 64-bit
– Without module support
– Minimal configuration: Network support, essential drivers 

for root fs and for a paravirtualized environment
● Record executed basic blocks via Vyukov’s KCOV  [5]
● Use of LD_PRELOAD to collect covered BBs for a process 

hierarchy
● Convert BB to source code via addr2line
● Filtering using regex: /fs/|/mm/|fs\.h|mm\.h

Evaluation Setup
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syzkaller Activity
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● 65-hour run: syzkaller generated 2278 programs
● BB coverage: 10% of whole kernel, 31.4% of VFS
● 9.1% of VFS BBs covered that are not covered by LTP

Results (1)
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● Relation between BBs: VFS vs. syzkaller vs. LTP
● Absolute numbers of basic blocks shared among intersecting 

sets

Results (2)
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● Basic-block coverage of VFS by LTP is limited
● Used modified syzkaller to reach more VFS-related code
● Increased basic-block coverage by 9.1 % to 43.8%
● More observations (mem. accesses/lock ops.) for LockDoc to 

analyze → Increased quality
● Outlook

– Use Moonshine [6] approach to improve code coverage
– Generate full-fledged regression tests, sent them back to 

LTP?

Summary

Icon Licenses: CC-BY-SA 4.0 / CC0 1.0
Tux: Larry Ewing, CC-BY-SA 4.0
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