
Lupine Linux
“A Linux in Unikernel Clothing”

Dan Williams (IBM)

With Hsuan-Chi (Austin) Kuo (UIUC + IBM), Ricardo Koller (IBM), Sibin
Mohan (UIUC)

Roadmap

• Context
• Containers and isolation
• Unikernels
• Nabla containers

• Lupine Linux
• A linux in unikernel clothing

• Concluding thoughts

2

Containers are great!

• Have changed how applications are packaged, deployed and
developed
• Normal processes, but “contained”

• Namespaces, cgroups, chroot

• Lightweight
• Start quickly, “bare metal”
• Easy image management (layered fs)

• Tooling/orchestration ecosystem

3

But…

• Large attack surface to the host
• Limits adoption of container-first architecture

• Fortunately, we know how to reduce attack surface!

4

Host Kernel with
namespacing
(e.g., Linux)

app

High level of
abstraction
(e.g., system
calls)

Containers

Deprivileging and unsharing kernel functionality

• Virtual machines (VMs)
• Guest kernel
• Thin interface

5

Host Kernel/Hypervisor
(e.g., Linux/KVM)

app

Monitor Process
(e.g., QEMU)

Guest Kernel
(e.g., Linux)

Low level of
abstraction
(e.g., virtual
hardware)

VMs

Host Kernel with
namespacing
(e.g., Linux)

app

High level of
abstraction
(e.g., system
calls)

Containers

Deprivileging and unsharing kernel functionality

• Virtual machines (VMs)
• Guest kernel
• Thin interface

• Userspace kernel
• Performance issues

6

Host Kernel/Hypervisor
(e.g., Linux/KVM)

app

Monitor Process
(e.g., QEMU)

Guest Kernel
(e.g., Linux)

Low level of
abstraction
(e.g., virtual
hardware)

VMs

Host Kernel with
namespacing
(e.g., Linux)

app

High level of
abstraction
(e.g., system
calls)

Containers

But wait? Aren't VMs slow and heavyweight?

7

• Boot time?
• Memory footprint?

• Especially for environments
like serverless??!!

VMs are becoming lightweight

• Thin monitors
• e.g., AWS Firecracker
• Reduce complexity for performance (e.g., no PCI)

8

Host Kernel/Hypervisor
(e.g., Linux/KVM)

app

Monitor Process
(e.g., QEMU)

Guest Kernel
(e.g., Linux)

Low level of
abstraction
(e.g., virtual
hardware)

VMs

VMs are becoming lightweight

9

Host Kernel/Hypervisor
(e.g., Linux/KVM)

app

Monitor Process

Low level of
abstraction
(e.g., virtual
hardware)

VMs

Guest Kernel
(e.g., Linux)

• Thin monitors
• e.g., AWS Firecracker
• Reduce complexity for performance (e.g., no PCI)

Firecracker boot times as reported
in Agache et al., NSDI 2020

VMs are becoming lightweight

10

Host Kernel/Hypervisor
(e.g., Linux/KVM)

app

Monitor Process

Low level of
abstraction
(e.g., virtual
hardware)

VMs

Guest Kernel
(e.g., Linux)

Firecracker boot times as reported
in Agache et al., NSDI 2020

Manco et al., SOSP 2017

• Thin monitors
• e.g., AWS Firecracker
• Reduce complexity for performance (e.g., no PCI)

VMs are becoming lightweight

• Thin monitors
• e.g., AWS Firecracker
• Reduce complexity for performance (e.g., no PCI)

• Thin guests?
• Userspace: (e.g., Ubuntu --> Alpine Linux)
• Kernel configuration (e.g., TinyX, Lupine)
• Unikernels

11

Host Kernel/Hypervisor
(e.g., Linux/KVM)

app

Monitor Process

Guest Kernel

Low level of
abstraction
(e.g., virtual
hardware)

VMs

Eurosys 2020 KubeCon 2020

• An application linked with library OS components
• Run on virtual hardware (like) abstraction
• Single CPU

• Language-specific
• MirageOS (OCaml)
• IncludeOS (C++)

• Legacy-oriented
• Rumprun (NetBSD-based)
• Hermitux
• OSv

Unikernels are thin guests to the extreme

VM

12

Claim binary compatibility
with Linux

Deprivileging and unsharing kernel functionality

• Virtual machines (VMs)
• Guest kernel
• Thin interface

• Userspace kernel
• E.g., UML
• Performance issues

• Library OS / unikernel
• Only-what-you need
• Lightweight

13

Host Kernel/Hypervisor
(e.g., Linux/KVM)

app

Monitor Process
(e.g., QEMU)

Guest Kernel
(e.g., Linux)

Low level of
abstraction
(e.g., virtual
hardware)

VMs

Host Kernel with
namespacing
(e.g., Linux)

app

High level of
abstraction
(e.g., system
calls)

Containers

What we learned from Nabla containers

• Nabla containers are unikernels as
processes
• Can achieve or exceed lightweight

characteristics of containers
• Interfaces are what matter, not

virtualization HW

• But we lose a lot: Generality
• Lupine Linux: applying unikernel

techniques to Linux VMs

14

HotCloud ’16, HotOS ‘17

HotCloud ’18, SOCC ‘18

Eurosys ’20

Unikernel as Process

Library OS

Solo5

FS
TCP/IP

…

Application
libraries, runtimes

What we learned from Nabla containers

• Nabla containers are unikernels as
processes
• Can achieve or exceed lightweight

characteristics of containers
• Interfaces are what matter, not

virtualization HW

• But we lose a lot: Generality
• Lupine Linux: applying unikernel

techniques to Linux VMs

15

HotCloud ’16, HotOS ‘17

HotCloud ’18, SOCC ‘18

Eurosys ’20

Unikernel as Process

Library OS

Solo5

FS
TCP/IP

…

Application
libraries, runtimes

this
talk

Lupine Linux Overview and Roadmap

16

Unikernel-like techniques

Specialization
via Kconfig

System Call
Overhead

Elimination
via KML

Linux source
Lupine Linux
“Unikernel”

Application manifest

Application (container) App rootfs

• Introduction
• Lupine Linux

• Specialization
• System Call Overhead

Elimination
• Putting it together

• Evaluation
• Discussion
• Related Work

Unikernels are great

• Small kernel size
• Fast boot time
• Performance
• Security

Unikernels are great… but

• Small kernel size
• Fast boot time
• Performance
• Security

• Lack full Linux support
• Hermitux: supports only 97 system calls
• OSv:

• application needs to be compiled with –PIE, can’t use TLS
• Static-linked applications are not supported
• Fork() , execve() are not supported
• Special files are not supported such as /proc
• Signal mechanism is not complete

• Rumprun: only 37 curated applications
• Community is too small to keep it rolling

Can Linux
> be as small as

> boot as fast as
> outperform

unikernels?

Lupine Linux
“Unikernel”

Can Linux
> be as small as

> boot as fast as
> outperform

unikernels?

Lupine Linux
“Unikernel”

• Spoiler alert: Yes!
• 4MB image size
• 23 ms boot time
• Up to 33% higher throughput

Lupine Linux Overview and Roadmap

21

Unikernel-like techniques

Specialization
via Kconfig

System Call
Overhead

Elimination
via KML

Linux source
Lupine Linux
“Unikernel”

Application manifest

Application (container) App rootfs

• Introduction
• Lupine Linux

• Specialization
• System Call Overhead

Elimination
• Putting it together

• Evaluation
• Discussion
• Related Work

Lupine Linux Overview and Roadmap

22

Unikernel-like techniques

Specialization
via Kconfig

System Call
Overhead

Elimination
via KML

Linux source
Lupine Linux
“Unikernel”

Application manifest

Application (container) App rootfs

• Introduction
• Lupine Linux

• Specialization
• System Call Overhead

Elimination
• Putting it together

• Evaluation
• Discussion
• Related Work

Unikernel technique #1: Specialization

• Unikernels include only what
is needed

• Linux is very configurable
• Kconfig
• 16,000 options

• Drivers
• Filesystems
• Processor features
• ...

Specializing Linux through configuration

24

• Start with Firecracker
microvm configuration
• Assuming unikernel-like

workload, can remove
even more!
• Application-specific

options
• Multiprocessing
• HW management

Application-specific options

• Example: system calls

• Kernel services
• e.g., /proc, sysctl

• Kernel library
• Crypto routines
• Compression routines

• Debugging/information

25

Option Enabled System Call(s)
ADVISE_SYSCALLS madvise, fadvise64
AIO io_setup, io_destroy, io_submit, io_cancel, io_getevents
BPF_SYSCALL bpf
EPOLL epoll_ctl, epoll_create, epoll_wait, epoll_pwait
EVENTFD eventfd, eventfd2
FANOTIFY fanotify_init, fanotify_mark
FHANDLE open_by_handle_at, name_to_handle_at
FILE_LOCKING �ock
FUTEX futex, set_robust_list, get_robust_list
INOTIFY_USER inotify_init, inotify_add_watch, inotify_rm_watch
SIGNALFD signalfd, signalfd4
TIMERFD timerfd_create, timerfd_gettime, timerfd_settime

Table 1. Linux con�guration options that enable/disable
system calls.

A Lupine kernel compiled for redis does not contain the
AIO or EVENTFD-related system calls.

In addition to the above, some applications expect other
services from the kernel, for instance, the /proc �lesystem or
sysctl functionality. Moreover, the Linux kernel maintains
a substantial library that resides in the kernel because of its
traditional position as a more privileged security domain.
Unikernels do not maintain the traditional privilege separa-
tion but may make use of this functionality directly or indi-
rectly by using a protocol or service that needs it (e.g., cryp-
tographic routines for IPsec). We marked 20 compression-
related and 55 crypto-related options from the microVM
con�guration as application-speci�c. Finally, Linux contains
signi�cant facilities for debugging; a Lupine unikernel can
select up to 65 debugging and information-related kernel
con�guration options from microVM’s con�guration.
In total, we classi�ed approximately 311 con�guration

options as application-speci�c as shown in Figure 4. In Sec-
tion 4, we will evaluate the degree of application specializa-
tion via Linux kernel con�guration (and its e�ects) achieved
in Lupine for common cloud applications.

3.1.2 Unnecessary options.
Some options in microVM’s con�guration will, by de�ni-
tion, never be needed by any Lupine unikernel so they can
be safely eliminated. We categorize these options into two
groups: (1) those that stem from the single-process nature of
unikernels and (2) those that stem from the expected virtual
hardware environment in the cloud.

Unikernels are not intended for multiple processes. The
Linux kernel is intended to runmultiple processes, thus requir-
ing con�gurable functionality for synchronization, sched-
uling and resource accounting. For example, cgroups and
namespaces are speci�c mechanisms that limit, account for
and isolate resource utilization between processes or groups
of processes. We classi�ed about 20 con�guration options
related to cgroups and namespaces in Firecracker’s microVM
con�guration.

Furthermore, the kernel is usually run in a separate, more
privileged security domain than the application. As such,
the kernel contains enhanced access control systems such
as SELinux and functionality to guard the crossing from the
application domain to the kernel domain, such as seccomp
�lters, all of which are all unnecessary for unikernels More
importantly, security options with a severe impact on per-
formance are also unnecessary for this reason. For example,
KPTI (kernel page table isolation [9]) forbids the mapping
of kernel pages into processes’ page table to mitigate the
Meltdown [39] vulnerability. This dramatically a�ects sys-
tem call performance; when testing with KPTI on Linux 5.0
we measured a 10x slowdown in system call latency. In total,
we eliminated 12 con�guration options due to the single
security domain.
Linux is well equipped to run on multiple-processor sys-

tems. As a result, the kernel contains various options to in-
clude and tune SMP and NUMA functionality. On the other
hand, since most unikernels do not support fork, the stan-
dard approach to take advantage of multiple processors is to
run multiple unikernels.
Finally, Linux contains facilities for dynamically loading

functionality through modules. A single application facili-
tates the creation of a kernel that contains all functionality
it needs at build time.
Overall, we attribute the removal of 89 con�guration op-

tions to the single-process—“uni”—characteristics of uniker-
nels as shown in Figure 4 (under "Multiple Processes"). In
Section 5, we examine the relaxation of this property.

Unikernels are not intended for general hardware. De-
fault con�gurations for Linux are intended to result in a
general-purpose system. Such a system is intimately involved
in managing hardware with con�gurable functionality to
perform tasks, including power management, hotplug and
driving and interfacing with devices. Unikernels, which are
typically intended to run as virtual machines in the cloud,
can leave many physical hardware management tasks to the
underlying host or hypervisor. Firecracker’s microVM ker-
nel con�guration demonstrates the �rst step by eliminating
many unnecessary drivers and architecture-speci�c con�g-
uration options (as shown in Figure 3). Lupine’s con�gura-
tion goes further by classifying 150 con�guration options—
including 24 options for power management that can be left
to the underlying host—as unnecessary for Lupine uniker-
nels as shown in Figure 4.

3.2 Eliminating System Call Overhead
Kernel Mode Linux [41] is an existing patch to Linux that
enables normal user processes to run in kernel mode, share
an address space with the kernel and eliminate the need for
expensive privilege transitions or context switches during
system calls. Yet they are processes that, unlike kernel mod-
ules, do not require any change to the programming model

5

Other assumptions from unikernels

• Unikernels are not intended for multiple processes
• Related to isolating, accounting for processes

• Cgroups, namespaces, SElinux, seccomp, KPTI
• SMP, NUMA
• Module support

• Unikernels are not intended for general hardware
• Intended to run as VMs in the cloud
• microVM removes many drivers and arch-specific configs
• Lupine removes more, including power mgmt

26

How to get an app-specific kernel config

27

• Start with lupine-base
• Manual trial and error

• Guided by application
output

• E.g., the futex facility
returned an unexpected
error code

=> CONFIG_FUTEX

• In general, this is a hard
problem

Lupine Linux Overview and Roadmap

28

Unikernel-like techniques

Specialization
via Kconfig

System Call
Overhead

Elimination
via KML

Linux source
Lupine Linux
“Unikernel”

Application manifest

Application (container) App rootfs

• Introduction
• Lupine Linux

• Specialization
• System Call Overhead

Elimination
• Putting it together

• Evaluation
• Discussion
• Related Work

Unikernel technique #2: System call overhead
elimination
• Kernel Mode Linux (KML)

• Non-upstream patch (latest Linux 4.0)
• Execute unmodified apps in kernel mode
• User program can directly access the kernel

• Replace “syscall” instruction with “call” in libc e.g., musl

• Requires relink for static binaries
• Less invasive than build modifications for unikernels

- __asm__ __volatile__ ("syscall" : "=a"(ret) :
+ __asm__ __volatile__ ("call *%1" : "=a"(ret) : "r"(__kml),

"a"(n), "D"(a1), "S"(a2),
"d"(a3), "r"(r10), "r"(r8),
"r"(r9) : "rcx", "r11", "memory");

Location exposed
via vsyscall

Lupine Linux Overview and Roadmap

30

Unikernel-like techniques

Specialization
via Kconfig

System Call
Overhead

Elimination
via KML

Linux source
Lupine Linux
“Unikernel”

Application manifest

Application (container) App rootfs

• Introduction
• Lupine Linux

• Specialization
• System Call Overhead

Elimination
• Putting it together

• Evaluation
• Discussion
• Related Work

Putting it all together

31

Linux kernel source

Unmodified
app binary

libc.solibm.so
libc.solib

ra
rie

s

Putting it all together

32

Application-specific
Lupine config

Linux kernel source

Unmodified
app binary

libc.solibm.so
libc.solib

ra
rie

sApplication-specific requirements (manifest)

Sp
ec

ia
liz

at
io

n

Putting it all together

33

Application-specific
Lupine config

Linux kernel source

KML
patch

KML-enabled
musl libc

Unmodified
app binary

libc.solibm.so
libc.solib

ra
rie

sApplication-specific requirements (manifest)

Sp
ec

ia
liz

at
io

n
Sy

st
em

 ca
ll

ov
er

he
ad

el

im
in

at
io

n

Putting it all together

34

Application-specific
Lupine config

Linux kernel source

KML
patch

KML-enabled
musl libc

Unmodified
app binary

libc.solibm.so
libc.solib

ra
rie

s

Application-specific
Lupine kernel image

Application-specific requirements (manifest)

Sp
ec

ia
liz

at
io

n
Sy

st
em

 ca
ll

ov
er

he
ad

el

im
in

at
io

n

Remaining issues

• How to build a root filesystem for Linux
• Container images are root filesystems already
• Contains both application and necessary libraries

• How to start the (single) application
• Linux kernel parameter “init” specifies first program, usually “/sbin/init”
• Boot the kernel with “init=/app”
• Caveats:

• May need some simple setup (e.g., network)
• Application-specific!

35

Putting it all together

36

Application-specific
Lupine config

Linux kernel source

KML
patch

KML-enabled
musl libc

Unmodified
app binary

libc.solibm.so
libc.solib

ra
rie

s

Application-specific
Lupine kernel image

Application-specific requirements (manifest)

Sp
ec

ia
liz

at
io

n
Sy

st
em

 ca
ll

ov
er

he
ad

el

im
in

at
io

n

Putting it all together

37

Container image (alpine)

Metadata
entrypoint

env variables

Application-specific
Lupine config

Linux kernel source

KML
patch

KML-enabled
musl libc

Unmodified
app binary

libc.solibm.so
libc.solib

ra
rie

s

Application-specific
Lupine kernel image

Application-specific requirements (manifest)

Sp
ec

ia
liz

at
io

n
Sy

st
em

 ca
ll

ov
er

he
ad

el

im
in

at
io

n

Putting it all together

38

Container image (alpine)

Metadata
entrypoint

env variables

Application-
specific

startup script
(“init”)

Lupine app “rootfs”

Application-specific
Lupine config

Linux kernel source

KML
patch

KML-enabled
musl libc

Unmodified
app binary

libc.solibm.so
libc.solib

ra
rie

s

Application-specific
Lupine kernel image

Application-specific requirements (manifest)

Sp
ec

ia
liz

at
io

n
Sy

st
em

 ca
ll

ov
er

he
ad

el

im
in

at
io

n

Lupine Linux Overview and Roadmap

39

Unikernel-like techniques

Specialization
via Kconfig

System Call
Overhead

Elimination
via KML

Linux source
Lupine Linux
“Unikernel”

Application manifest

Application (container) App rootfs

• Introduction
• Lupine Linux

• Specialization
• System Call Overhead

Elimination
• Putting it together

• Evaluation
• Discussion
• Related Work

Evaluation setup

• Machine setup
• CPU: Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.80GHz
• Mem: 16 GB

• VM setup
• Hypervisor : firecracker
• 1 VCPU, 512 MB Mem
• Guest: Linux 4.0 with and without KML patches

Configuration Diversity

• Manually determined app-specific configurations
• 20 top apps on Docker hub (83% of all downloads)
• Only 19 configuration options required to run all

20 applications: lupine-general

41

improvement in macrobenchmarks, indicating that system
call overhead should not be a primary concern for uniker-
nel developers. Finally, we show that Lupine avoids major
pitfalls of POSIX-like unikernels that stem from not being
Linux-based, including both the lack of support for unmod-
i�ed applications and performance from highly-optimized
code.

4.1 Con�guration diversity
Lupine attempts to mimic the only-what-you-need approach
of unikernels in order to achieve some of their performance
and security characteristics. In this subsection, we evaluate
how much specialization of the Linux kernel occurs in prac-
tice when considering the most popular cloud applications.
Unlike other unikernel approaches, Lupine poses no re-

strictions on applications and requires no application modi-
�cations, alternate build processes, or curated package lists.
As a result, we were able to directly run the most popu-
lar cloud applications on Lupine unikernels. To determine
popularity, we used the 20 most downloaded container im-
ages from Docker Hub [2]. We �nd that popularity follows a
power-law distribution: 20 applications account for 83% of
all downloads. Table 3 lists the applications.
For each application, in place of an application manifest,

we carried out the following process to determine the mini-
mal viable con�guration. First we ran the application as a
standard container to determine success criteria for the ap-
plication. While success criteria could include sophisticated
test suites or achieving performance targets, we limited our-
selves to the following tests. Language runtimes like golang,
openjdk or python were tested by compiling (when applica-
ble) a hello world application and testing that the message
was correctly printed. Servers like elasticsearch or nginx
were tested with simple queries or health status queries.
haproxy and traefik were tested by checking the logs in-
dicating that they were ready to accept tra�c. We discuss
the potential pitfalls of this approach in Section 6.

Once we had determined success criteria, we attempted to
run the application on a Linux kernel built with the lupine-
base con�guration as described in Section 3.1. Recall that
the base con�guration is derived from microVM but lacks
about 550 con�guration options that we classi�ed as hard-
ware management, multiprocessing and application-speci�c.
Some applications require no further con�guration options
to be enabled beyond lupine-base. For others, we added new
options one by one while testing the application at each step.
We expected all new options to be from the set classi�ed as
application-speci�c.
The process was manual: application output guided

which con�guration options to try. For example, an er-
ror message like “the futex facility returned an unexpected
error code” indicated that we should add CONFIG_FUTEX,
“epoll_create1 failed: function not implemented” suggested we
try CONFIG_EPOLL and “can’t create UNIX socket” indicated

Name Downloads Description
Options atop
lupine-base

nginx 1.7 Web server 13
postgres 1.6 Database 10
httpd 1.4 Web server 13
node 1.2 Language runtime 5
redis 1.2 Key-value store 10
mongo 1.2 NOSQL database 11
mysql 1.2 Database 9
trae�k 1.1 Edge router 8
memcached 0.9 Key-value store 10
hello-world 0.9 C program “hello” 0
mariadb 0.8 Database 13
golang 0.6 Language runtime 0
python 0.5 Language runtime 0
openjdk 0.5 Language runtime 0
rabbitmq 0.5 Message broker 12
php 0.4 Language runtime 0
wordpress 0.4 PHP/mysql blog tool 9
haproxy 0.4 Load balancer 8
in�uxdb 0.3 Time series database 11
elasticsearch 0.3 Search engine 12

Table 3. Top twenty most popular applications on Docker
Hub (by billions of downloads) and the number of additional
con�guration options each requires beyond the lupine-base
kernel con�guration. 9

Figure 5. Growth of Lupine application con�gurations to
support more apps.

CONFIG_UNIX. Some error messages were less helpful and
required some trial and error. Finally, some messages indi-
cated that the application was likely not well-suited to be a
unikernel. For example, postgres in Linux is made up of �ve
processes (background writers, checkpointer, and replicator).
It required CONFIG_SYSVIPC, an option we had classi�ed as
multi-process related and therefore not appropriate for a
unikernel. Lupine can run such an application despite its ob-
vious non-unikernel character, which is an advantage over
other unikernel-based approaches. We will discuss the im-
plications of relaxing unikernel restrictions in Section 5.

9We exclude the Docker daemon in this table because Linux 4.0 does not
support layered �le systems, a prerequisite for Docker.

7

improvement in macrobenchmarks, indicating that system
call overhead should not be a primary concern for uniker-
nel developers. Finally, we show that Lupine avoids major
pitfalls of POSIX-like unikernels that stem from not being
Linux-based, including both the lack of support for unmod-
i�ed applications and performance from highly-optimized
code.

4.1 Con�guration diversity
Lupine attempts to mimic the only-what-you-need approach
of unikernels in order to achieve some of their performance
and security characteristics. In this subsection, we evaluate
how much specialization of the Linux kernel occurs in prac-
tice when considering the most popular cloud applications.
Unlike other unikernel approaches, Lupine poses no re-

strictions on applications and requires no application modi-
�cations, alternate build processes, or curated package lists.
As a result, we were able to directly run the most popu-
lar cloud applications on Lupine unikernels. To determine
popularity, we used the 20 most downloaded container im-
ages from Docker Hub [2]. We �nd that popularity follows a
power-law distribution: 20 applications account for 83% of
all downloads. Table 3 lists the applications.
For each application, in place of an application manifest,

we carried out the following process to determine the mini-
mal viable con�guration. First we ran the application as a
standard container to determine success criteria for the ap-
plication. While success criteria could include sophisticated
test suites or achieving performance targets, we limited our-
selves to the following tests. Language runtimes like golang,
openjdk or python were tested by compiling (when applica-
ble) a hello world application and testing that the message
was correctly printed. Servers like elasticsearch or nginx
were tested with simple queries or health status queries.
haproxy and traefik were tested by checking the logs in-
dicating that they were ready to accept tra�c. We discuss
the potential pitfalls of this approach in Section 6.

Once we had determined success criteria, we attempted to
run the application on a Linux kernel built with the lupine-
base con�guration as described in Section 3.1. Recall that
the base con�guration is derived from microVM but lacks
about 550 con�guration options that we classi�ed as hard-
ware management, multiprocessing and application-speci�c.
Some applications require no further con�guration options
to be enabled beyond lupine-base. For others, we added new
options one by one while testing the application at each step.
We expected all new options to be from the set classi�ed as
application-speci�c.
The process was manual: application output guided

which con�guration options to try. For example, an er-
ror message like “the futex facility returned an unexpected
error code” indicated that we should add CONFIG_FUTEX,
“epoll_create1 failed: function not implemented” suggested we
try CONFIG_EPOLL and “can’t create UNIX socket” indicated

Name Downloads Description
Options atop
lupine-base

nginx 1.7 Web server 13
postgres 1.6 Database 10
httpd 1.4 Web server 13
node 1.2 Language runtime 5
redis 1.2 Key-value store 10
mongo 1.2 NOSQL database 11
mysql 1.2 Database 9
trae�k 1.1 Edge router 8
memcached 0.9 Key-value store 10
hello-world 0.9 C program “hello” 0
mariadb 0.8 Database 13
golang 0.6 Language runtime 0
python 0.5 Language runtime 0
openjdk 0.5 Language runtime 0
rabbitmq 0.5 Message broker 12
php 0.4 Language runtime 0
wordpress 0.4 PHP/mysql blog tool 9
haproxy 0.4 Load balancer 8
in�uxdb 0.3 Time series database 11
elasticsearch 0.3 Search engine 12

Table 3. Top twenty most popular applications on Docker
Hub (by billions of downloads) and the number of additional
con�guration options each requires beyond the lupine-base
kernel con�guration. 9

 8
 10
 12
 14
 16
 18
 20

 0 2 4 6 8 10 12 14 16 18 20N
um

be
r c

on
�g

 o
pt

io
ns

Support for top x apps

Figure 5. Growth of Lupine application con�gurations to
support more apps.

CONFIG_UNIX. Some error messages were less helpful and
required some trial and error. Finally, some messages indi-
cated that the application was likely not well-suited to be a
unikernel. For example, postgres in Linux is made up of �ve
processes (background writers, checkpointer, and replicator).
It required CONFIG_SYSVIPC, an option we had classi�ed as
multi-process related and therefore not appropriate for a
unikernel. Lupine can run such an application despite its ob-
vious non-unikernel character, which is an advantage over
other unikernel-based approaches. We will discuss the im-
plications of relaxing unikernel restrictions in Section 5.

9We exclude the Docker daemon in this table because Linux 4.0 does not
support layered �le systems, a prerequisite for Docker.

7

Kernel image size

42

 0
 2
 4
 6
 8

 10
 12
 14
 16

microVM
lupine

lupine-general

hermitux
osv rump

M
eg

ab
yt

es
Figure 6. Image size for hello world.

Table 3 shows the number of con�guration options (be-
yond lupine-base) deemed necessary to reach the success
criteria for each application. Figure 5 depicts overlapping
options thus showing how the union of the necessary con�g-
uration options grows as more applications are considered.
The union of all con�guration options is 19; in other words,
a kernel (lupine-general) with only 19 con�guration options
added on top of the lupine-base con�guration is su�cient to
run all 20 of the most popular applications. The �attening of
the growth curve provides evidence that a relatively small
set of con�guration options may be su�cient to support a
large number of popular applications.

4.2 Image Size
Most unikernels achieve small image sizes by eschewing gen-
erality. Similarly, Lupine uses the Linux kernel’s con�gura-
tion facilities for specialization. Figure 6 compares the kernel
image size of Lupine to microVM and several unikernels—all
con�gured to run a simple hello world application in or-
der to measure the minimal possible kernel image size. The
lupine-base image (su�cient for the hello world) is only 27%
of the microVM image, which is already a slim kernel image
for general cloud applications. When con�guring Lupine to
optimize for size over performance (-tiny), the Lupine image
shrinks by a further 6%.

Figure 6 shows Lupine to be comparable to our reference
unikernel images. We note that Lupine dynamically loads
libraries (like libc) whereas unikernels like Rump statically
link them into the image, resulting in larger image size. How-
ever, for a trivial application like hello-world libc is not
needed and Rump’s libc (which consists of 24M) is not in-
cluded in the image (or the reported numbers).
We also examined the e�ect on application-speci�c con-

�guration on the Lupine kernel image size. We found that
the image size of lupine kernels varied from 27 � 33% of mi-
croVM’s baseline. Compared to lupine-base, this corresponds
to an increase of up to 19 percent. Even with the largest
Lupine kernel con�guration (lupine-general) the resulting
image size remains smaller than the corresponding OSv and
Rump image sizes.

Figure 7. Boot time for hello world.

4.3 Boot Time
Figure 7 shows the boot time to run a hello-world application
for each con�guration. Firecracker logs the boot time of all
Linux variants and OSv based on an I/O port write from the
guest. We modi�ed the unikernel monitors solo5-hvt and
uhyve respectively to similarly measure boot time via an I/O
port write from the guest.
As shown in Figure 7, use of a unikernel monitor does

not guarantee fast boot time. Instead, unikernel implementa-
tion choices dominate the boot time. The OSv measurements
show how dramatic the e�ects of unikernel implementation
can be: when we �rst measured it using zfs (the standard
r/w �lesystem for OSv), boot time was 10x slower than the
numbers we had seen reported elsewhere. After investiga-
tion, we found that a reduction in unikernel complexity to
use a read-only �lesystem resulted in the 10x improvement,
thus underscoring the importance of implementation.
Lupine’s con�guration shows signi�cant improvement

over microVM and comparable boot time to the reference
unikernels. In Figure 7, we present the boot time without
KML (lupine-nokml). A primary enabler of fast boot time
in Linux comes from the CONFIG_PARAVIRT con�guration
option which is active in microVM and lupine-nokml, but
currently incompatible with KML. Without this option boot
time jumps to 71 ms for Lupine. We believe that the in-
compatibilities with KML are not fundamental and could be
overcome with engineering e�ort and would result in similar
boot times to lupine-nokml. We do not �nd an improvement
in Lupine’s boot time when employing space-saving tech-
niques (-tiny) with or without KML. In other words, the 6%
reduction in image size described in Section 4.2 does not
a�ect boot time thus implying that boot time is more about
reducing the complexity of the boot process than the image
size. For lupine-general, we found only 2 ms additional boot
time is incurred, remaining faster than HermiTux and OSv.

4.4 Memory Footprint
Unikernels achieve low memory footprint by using small
runtime images that include only what is needed to run a
particular application.We de�ne thememory footprint for an
application as the minimum amount of memory required by
the unikernel to successfully run that application as de�ned
by success criteria described in Section 4.1. We determine

8

Kernel image size

• Configuration is effective
• 4 MB
• 27% (hello) - 33% of

microvm
• Even lupine-general

produces smaller images
than Rump, OSv

43

 0
 2
 4
 6
 8

 10
 12
 14
 16

microVM
lupine

lupine-general

hermitux
osv rump

M
eg

ab
yt

es
Figure 6. Image size for hello world.

Table 3 shows the number of con�guration options (be-
yond lupine-base) deemed necessary to reach the success
criteria for each application. Figure 5 depicts overlapping
options thus showing how the union of the necessary con�g-
uration options grows as more applications are considered.
The union of all con�guration options is 19; in other words,
a kernel (lupine-general) with only 19 con�guration options
added on top of the lupine-base con�guration is su�cient to
run all 20 of the most popular applications. The �attening of
the growth curve provides evidence that a relatively small
set of con�guration options may be su�cient to support a
large number of popular applications.

4.2 Image Size
Most unikernels achieve small image sizes by eschewing gen-
erality. Similarly, Lupine uses the Linux kernel’s con�gura-
tion facilities for specialization. Figure 6 compares the kernel
image size of Lupine to microVM and several unikernels—all
con�gured to run a simple hello world application in or-
der to measure the minimal possible kernel image size. The
lupine-base image (su�cient for the hello world) is only 27%
of the microVM image, which is already a slim kernel image
for general cloud applications. When con�guring Lupine to
optimize for size over performance (-tiny), the Lupine image
shrinks by a further 6%.

Figure 6 shows Lupine to be comparable to our reference
unikernel images. We note that Lupine dynamically loads
libraries (like libc) whereas unikernels like Rump statically
link them into the image, resulting in larger image size. How-
ever, for a trivial application like hello-world libc is not
needed and Rump’s libc (which consists of 24M) is not in-
cluded in the image (or the reported numbers).
We also examined the e�ect on application-speci�c con-

�guration on the Lupine kernel image size. We found that
the image size of lupine kernels varied from 27 � 33% of mi-
croVM’s baseline. Compared to lupine-base, this corresponds
to an increase of up to 19 percent. Even with the largest
Lupine kernel con�guration (lupine-general) the resulting
image size remains smaller than the corresponding OSv and
Rump image sizes.

Figure 7. Boot time for hello world.

4.3 Boot Time
Figure 7 shows the boot time to run a hello-world application
for each con�guration. Firecracker logs the boot time of all
Linux variants and OSv based on an I/O port write from the
guest. We modi�ed the unikernel monitors solo5-hvt and
uhyve respectively to similarly measure boot time via an I/O
port write from the guest.
As shown in Figure 7, use of a unikernel monitor does

not guarantee fast boot time. Instead, unikernel implementa-
tion choices dominate the boot time. The OSv measurements
show how dramatic the e�ects of unikernel implementation
can be: when we �rst measured it using zfs (the standard
r/w �lesystem for OSv), boot time was 10x slower than the
numbers we had seen reported elsewhere. After investiga-
tion, we found that a reduction in unikernel complexity to
use a read-only �lesystem resulted in the 10x improvement,
thus underscoring the importance of implementation.
Lupine’s con�guration shows signi�cant improvement

over microVM and comparable boot time to the reference
unikernels. In Figure 7, we present the boot time without
KML (lupine-nokml). A primary enabler of fast boot time
in Linux comes from the CONFIG_PARAVIRT con�guration
option which is active in microVM and lupine-nokml, but
currently incompatible with KML. Without this option boot
time jumps to 71 ms for Lupine. We believe that the in-
compatibilities with KML are not fundamental and could be
overcome with engineering e�ort and would result in similar
boot times to lupine-nokml. We do not �nd an improvement
in Lupine’s boot time when employing space-saving tech-
niques (-tiny) with or without KML. In other words, the 6%
reduction in image size described in Section 4.2 does not
a�ect boot time thus implying that boot time is more about
reducing the complexity of the boot process than the image
size. For lupine-general, we found only 2 ms additional boot
time is incurred, remaining faster than HermiTux and OSv.

4.4 Memory Footprint
Unikernels achieve low memory footprint by using small
runtime images that include only what is needed to run a
particular application.We de�ne thememory footprint for an
application as the minimum amount of memory required by
the unikernel to successfully run that application as de�ned
by success criteria described in Section 4.1. We determine

8

Boot time

• Measured via I/O port
write from guest
• OSv boot heavily

depends on FS choice

44

Figure 6. Image size for hello world.

Table 3 shows the number of con�guration options (be-
yond lupine-base) deemed necessary to reach the success
criteria for each application. Figure 5 depicts overlapping
options thus showing how the union of the necessary con�g-
uration options grows as more applications are considered.
The union of all con�guration options is 19; in other words,
a kernel (lupine-general) with only 19 con�guration options
added on top of the lupine-base con�guration is su�cient to
run all 20 of the most popular applications. The �attening of
the growth curve provides evidence that a relatively small
set of con�guration options may be su�cient to support a
large number of popular applications.

4.2 Image Size
Most unikernels achieve small image sizes by eschewing gen-
erality. Similarly, Lupine uses the Linux kernel’s con�gura-
tion facilities for specialization. Figure 6 compares the kernel
image size of Lupine to microVM and several unikernels—all
con�gured to run a simple hello world application in or-
der to measure the minimal possible kernel image size. The
lupine-base image (su�cient for the hello world) is only 27%
of the microVM image, which is already a slim kernel image
for general cloud applications. When con�guring Lupine to
optimize for size over performance (-tiny), the Lupine image
shrinks by a further 6%.

Figure 6 shows Lupine to be comparable to our reference
unikernel images. We note that Lupine dynamically loads
libraries (like libc) whereas unikernels like Rump statically
link them into the image, resulting in larger image size. How-
ever, for a trivial application like hello-world libc is not
needed and Rump’s libc (which consists of 24M) is not in-
cluded in the image (or the reported numbers).
We also examined the e�ect on application-speci�c con-

�guration on the Lupine kernel image size. We found that
the image size of lupine kernels varied from 27 � 33% of mi-
croVM’s baseline. Compared to lupine-base, this corresponds
to an increase of up to 19 percent. Even with the largest
Lupine kernel con�guration (lupine-general) the resulting
image size remains smaller than the corresponding OSv and
Rump image sizes.

 0
 10
 20
 30
 40
 50
 60

microVM
lupine-nokml

lupine-nokml-general

hermitux
osv-rofs

osv-zfs
rump

M
illi

se
co

nd
s

Figure 7. Boot time for hello world.

4.3 Boot Time
Figure 7 shows the boot time to run a hello-world application
for each con�guration. Firecracker logs the boot time of all
Linux variants and OSv based on an I/O port write from the
guest. We modi�ed the unikernel monitors solo5-hvt and
uhyve respectively to similarly measure boot time via an I/O
port write from the guest.
As shown in Figure 7, use of a unikernel monitor does

not guarantee fast boot time. Instead, unikernel implementa-
tion choices dominate the boot time. The OSv measurements
show how dramatic the e�ects of unikernel implementation
can be: when we �rst measured it using zfs (the standard
r/w �lesystem for OSv), boot time was 10x slower than the
numbers we had seen reported elsewhere. After investiga-
tion, we found that a reduction in unikernel complexity to
use a read-only �lesystem resulted in the 10x improvement,
thus underscoring the importance of implementation.
Lupine’s con�guration shows signi�cant improvement

over microVM and comparable boot time to the reference
unikernels. In Figure 7, we present the boot time without
KML (lupine-nokml). A primary enabler of fast boot time
in Linux comes from the CONFIG_PARAVIRT con�guration
option which is active in microVM and lupine-nokml, but
currently incompatible with KML. Without this option boot
time jumps to 71 ms for Lupine. We believe that the in-
compatibilities with KML are not fundamental and could be
overcome with engineering e�ort and would result in similar
boot times to lupine-nokml. We do not �nd an improvement
in Lupine’s boot time when employing space-saving tech-
niques (-tiny) with or without KML. In other words, the 6%
reduction in image size described in Section 4.2 does not
a�ect boot time thus implying that boot time is more about
reducing the complexity of the boot process than the image
size. For lupine-general, we found only 2 ms additional boot
time is incurred, remaining faster than HermiTux and OSv.

4.4 Memory Footprint
Unikernels achieve low memory footprint by using small
runtime images that include only what is needed to run a
particular application.We de�ne thememory footprint for an
application as the minimum amount of memory required by
the unikernel to successfully run that application as de�ned
by success criteria described in Section 4.1. We determine

8

Boot time

• Measured via I/O port
write from guest
• OSv boot heavily

depends on FS choice
• Lupine boot time

without KML*
• Even lupine-general

boots faster than
Hermitux, OSv

45

Figure 6. Image size for hello world.

Table 3 shows the number of con�guration options (be-
yond lupine-base) deemed necessary to reach the success
criteria for each application. Figure 5 depicts overlapping
options thus showing how the union of the necessary con�g-
uration options grows as more applications are considered.
The union of all con�guration options is 19; in other words,
a kernel (lupine-general) with only 19 con�guration options
added on top of the lupine-base con�guration is su�cient to
run all 20 of the most popular applications. The �attening of
the growth curve provides evidence that a relatively small
set of con�guration options may be su�cient to support a
large number of popular applications.

4.2 Image Size
Most unikernels achieve small image sizes by eschewing gen-
erality. Similarly, Lupine uses the Linux kernel’s con�gura-
tion facilities for specialization. Figure 6 compares the kernel
image size of Lupine to microVM and several unikernels—all
con�gured to run a simple hello world application in or-
der to measure the minimal possible kernel image size. The
lupine-base image (su�cient for the hello world) is only 27%
of the microVM image, which is already a slim kernel image
for general cloud applications. When con�guring Lupine to
optimize for size over performance (-tiny), the Lupine image
shrinks by a further 6%.

Figure 6 shows Lupine to be comparable to our reference
unikernel images. We note that Lupine dynamically loads
libraries (like libc) whereas unikernels like Rump statically
link them into the image, resulting in larger image size. How-
ever, for a trivial application like hello-world libc is not
needed and Rump’s libc (which consists of 24M) is not in-
cluded in the image (or the reported numbers).
We also examined the e�ect on application-speci�c con-

�guration on the Lupine kernel image size. We found that
the image size of lupine kernels varied from 27 � 33% of mi-
croVM’s baseline. Compared to lupine-base, this corresponds
to an increase of up to 19 percent. Even with the largest
Lupine kernel con�guration (lupine-general) the resulting
image size remains smaller than the corresponding OSv and
Rump image sizes.

 0
 10
 20
 30
 40
 50
 60

microVM
lupine-nokml

lupine-nokml-general

hermitux
osv-rofs

osv-zfs
rump

M
illi

se
co

nd
s

Figure 7. Boot time for hello world.

4.3 Boot Time
Figure 7 shows the boot time to run a hello-world application
for each con�guration. Firecracker logs the boot time of all
Linux variants and OSv based on an I/O port write from the
guest. We modi�ed the unikernel monitors solo5-hvt and
uhyve respectively to similarly measure boot time via an I/O
port write from the guest.
As shown in Figure 7, use of a unikernel monitor does

not guarantee fast boot time. Instead, unikernel implementa-
tion choices dominate the boot time. The OSv measurements
show how dramatic the e�ects of unikernel implementation
can be: when we �rst measured it using zfs (the standard
r/w �lesystem for OSv), boot time was 10x slower than the
numbers we had seen reported elsewhere. After investiga-
tion, we found that a reduction in unikernel complexity to
use a read-only �lesystem resulted in the 10x improvement,
thus underscoring the importance of implementation.
Lupine’s con�guration shows signi�cant improvement

over microVM and comparable boot time to the reference
unikernels. In Figure 7, we present the boot time without
KML (lupine-nokml). A primary enabler of fast boot time
in Linux comes from the CONFIG_PARAVIRT con�guration
option which is active in microVM and lupine-nokml, but
currently incompatible with KML. Without this option boot
time jumps to 71 ms for Lupine. We believe that the in-
compatibilities with KML are not fundamental and could be
overcome with engineering e�ort and would result in similar
boot times to lupine-nokml. We do not �nd an improvement
in Lupine’s boot time when employing space-saving tech-
niques (-tiny) with or without KML. In other words, the 6%
reduction in image size described in Section 4.2 does not
a�ect boot time thus implying that boot time is more about
reducing the complexity of the boot process than the image
size. For lupine-general, we found only 2 ms additional boot
time is incurred, remaining faster than HermiTux and OSv.

4.4 Memory Footprint
Unikernels achieve low memory footprint by using small
runtime images that include only what is needed to run a
particular application.We de�ne thememory footprint for an
application as the minimum amount of memory required by
the unikernel to successfully run that application as de�ned
by success criteria described in Section 4.1. We determine

8

*KML incompatibility with CONFIG_PARAVIRT

Memory Footprint

• Repeatedly tested app
with decreasing
memory allotment
• Choice of apps limited

by unikernels

46

 0
 10
 20
 30
 40
 50

microVM
lupine

lupine-general

hermitux
osv rump

M
eg

aB
yt

es hello nginx redis

Figure 8. Memory footprint.

Figure 9. System call latency via lmbench.

the memory footprint by repeatedly testing the unikernel
with a decreasing memory parameter passed to the monitor.
Our choice of applications was severely limited by what the
(non-Lupine) unikernels could run without modi�cation; we
only present the memory footprint for three applications
as shown in Figure 8. Unfortunately, HermiTux cannot run
nginx, so we omit that bar.
Figure 8 shows the memory footprint for each applica-

tion. In both application-speci�c and general cases, Lupine
achieves a comparable memory footprint that is even smaller
than unikernel approaches for redis. This is due in part to
lazy allocation. While each of the unikernels shows variation
in memory footprint, the Linux-based approaches (microVM
and Lupine) do not.10 There is no variation because the Linux
kernel binary (the �rst binary to be loaded) is more or less
the same size across applications. The binary size of the ap-
plication is irrelevant if much of it is loaded lazily and even a
large application-level allocation like the one made by redis
may not be populated until later. However, an argument can
be made in favor of eliminating laziness and upfront knowl-
edge of whether su�cient resources will be available for an
application. We further discuss this issue in the context of
immutable infrastructure in Section 6.

Figure 10. Relationship of KML syscall latency improve-
ment to busying-waiting iterations (the more busy-waiting
iterations the less frequent of user-kernel mode switching).

4.5 System call latency microbenchmark
Unikernels claim low system call latency due to the fact that
the application is directly linked with the library OS. Using
Lupine, a Linux system, can achieve similar system call la-
tency as other POSIX-like unikernel approaches. Figure 9
shows the lmbench system call latency benchmark for the
various systems. The results show that Lupine is competitive
with unikernel approaches for the null (getppid), read and
write tests in lmbench. OSv shows the e�ects of implemen-
tation choices as getppid (issued by the null system call
test) is hardcoded to always return 0 without any indirection.
Read of /dev/zero is unsupported and write to /dev/null

is almost as expensive as the microVM case.
Experimentation with lupine-nokml shows that both spe-

cialization and system call overhead elimination play a role.
Specialization contributes up to 56% improvement (achieved
during the write test) over microVM. However, we found no
di�erences in system call latency between the application-
speci�c and general variants (lupine-general) of Lupine. KML
provides Lupine an additional 40% (achieved during the null
test) improvement in system call latency over lupine-nokml.

To better understand the potential performance improve-
ments of KML on Lupine, we designed a microbenchmark
in which we issued the null (getppid) system call latency
test in a loop, while inserting a con�gurable amount of CPU
work via another tight loop to control the frequency of the
switching between user and kernel mode: the frequency of
switching decreases as the number of iterations increases.

In an extreme case where the application calls the system
call without doing anything else (0 iterations) KML provides
a 40% performance improvement. However, Figure 10 shows
how quickly the KML bene�ts are amortized away: with
only 160 iterations between the issued system calls the orig-
inal 40% improvement in latency drops below 5%. We �nd
similarly low KML bene�ts for real-world applications in
Section 4.6.

10OSv is similar to Linux in this case in that it loads the application dynam-
ically, which is why nginx and hello exhibit the same memory footprint;
we believe redis exhibits a larger memory footprint because of how the
OSv memory allocator works.

9

Memory Footprint

• Repeatedly tested app
with decreasing
memory allotment
• Choice of apps limited

by unikernels
• No variation in lupine:

lazy loading makes
binary size irrelevant

47

 0
 10
 20
 30
 40
 50

microVM
lupine

lupine-general

hermitux
osv rump

M
eg

aB
yt

es hello nginx redis

Figure 8. Memory footprint.

Figure 9. System call latency via lmbench.

the memory footprint by repeatedly testing the unikernel
with a decreasing memory parameter passed to the monitor.
Our choice of applications was severely limited by what the
(non-Lupine) unikernels could run without modi�cation; we
only present the memory footprint for three applications
as shown in Figure 8. Unfortunately, HermiTux cannot run
nginx, so we omit that bar.
Figure 8 shows the memory footprint for each applica-

tion. In both application-speci�c and general cases, Lupine
achieves a comparable memory footprint that is even smaller
than unikernel approaches for redis. This is due in part to
lazy allocation. While each of the unikernels shows variation
in memory footprint, the Linux-based approaches (microVM
and Lupine) do not.10 There is no variation because the Linux
kernel binary (the �rst binary to be loaded) is more or less
the same size across applications. The binary size of the ap-
plication is irrelevant if much of it is loaded lazily and even a
large application-level allocation like the one made by redis
may not be populated until later. However, an argument can
be made in favor of eliminating laziness and upfront knowl-
edge of whether su�cient resources will be available for an
application. We further discuss this issue in the context of
immutable infrastructure in Section 6.

Figure 10. Relationship of KML syscall latency improve-
ment to busying-waiting iterations (the more busy-waiting
iterations the less frequent of user-kernel mode switching).

4.5 System call latency microbenchmark
Unikernels claim low system call latency due to the fact that
the application is directly linked with the library OS. Using
Lupine, a Linux system, can achieve similar system call la-
tency as other POSIX-like unikernel approaches. Figure 9
shows the lmbench system call latency benchmark for the
various systems. The results show that Lupine is competitive
with unikernel approaches for the null (getppid), read and
write tests in lmbench. OSv shows the e�ects of implemen-
tation choices as getppid (issued by the null system call
test) is hardcoded to always return 0 without any indirection.
Read of /dev/zero is unsupported and write to /dev/null

is almost as expensive as the microVM case.
Experimentation with lupine-nokml shows that both spe-

cialization and system call overhead elimination play a role.
Specialization contributes up to 56% improvement (achieved
during the write test) over microVM. However, we found no
di�erences in system call latency between the application-
speci�c and general variants (lupine-general) of Lupine. KML
provides Lupine an additional 40% (achieved during the null
test) improvement in system call latency over lupine-nokml.

To better understand the potential performance improve-
ments of KML on Lupine, we designed a microbenchmark
in which we issued the null (getppid) system call latency
test in a loop, while inserting a con�gurable amount of CPU
work via another tight loop to control the frequency of the
switching between user and kernel mode: the frequency of
switching decreases as the number of iterations increases.

In an extreme case where the application calls the system
call without doing anything else (0 iterations) KML provides
a 40% performance improvement. However, Figure 10 shows
how quickly the KML bene�ts are amortized away: with
only 160 iterations between the issued system calls the orig-
inal 40% improvement in latency drops below 5%. We �nd
similarly low KML bene�ts for real-world applications in
Section 4.6.

10OSv is similar to Linux in this case in that it loads the application dynam-
ically, which is why nginx and hello exhibit the same memory footprint;
we believe redis exhibits a larger memory footprint because of how the
OSv memory allocator works.

9

System call latency microbenchmark

• Lmbench

48

Figure 8. Memory footprint.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

microvm
lupine-nokml

lupine
lupine-general

hermitux
osv rump

.19.17

La
te

nc
y

null
read
write

Figure 9. System call latency via lmbench.

the memory footprint by repeatedly testing the unikernel
with a decreasing memory parameter passed to the monitor.
Our choice of applications was severely limited by what the
(non-Lupine) unikernels could run without modi�cation; we
only present the memory footprint for three applications
as shown in Figure 8. Unfortunately, HermiTux cannot run
nginx, so we omit that bar.
Figure 8 shows the memory footprint for each applica-

tion. In both application-speci�c and general cases, Lupine
achieves a comparable memory footprint that is even smaller
than unikernel approaches for redis. This is due in part to
lazy allocation. While each of the unikernels shows variation
in memory footprint, the Linux-based approaches (microVM
and Lupine) do not.10 There is no variation because the Linux
kernel binary (the �rst binary to be loaded) is more or less
the same size across applications. The binary size of the ap-
plication is irrelevant if much of it is loaded lazily and even a
large application-level allocation like the one made by redis
may not be populated until later. However, an argument can
be made in favor of eliminating laziness and upfront knowl-
edge of whether su�cient resources will be available for an
application. We further discuss this issue in the context of
immutable infrastructure in Section 6.

Figure 10. Relationship of KML syscall latency improve-
ment to busying-waiting iterations (the more busy-waiting
iterations the less frequent of user-kernel mode switching).

4.5 System call latency microbenchmark
Unikernels claim low system call latency due to the fact that
the application is directly linked with the library OS. Using
Lupine, a Linux system, can achieve similar system call la-
tency as other POSIX-like unikernel approaches. Figure 9
shows the lmbench system call latency benchmark for the
various systems. The results show that Lupine is competitive
with unikernel approaches for the null (getppid), read and
write tests in lmbench. OSv shows the e�ects of implemen-
tation choices as getppid (issued by the null system call
test) is hardcoded to always return 0 without any indirection.
Read of /dev/zero is unsupported and write to /dev/null

is almost as expensive as the microVM case.
Experimentation with lupine-nokml shows that both spe-

cialization and system call overhead elimination play a role.
Specialization contributes up to 56% improvement (achieved
during the write test) over microVM. However, we found no
di�erences in system call latency between the application-
speci�c and general variants (lupine-general) of Lupine. KML
provides Lupine an additional 40% (achieved during the null
test) improvement in system call latency over lupine-nokml.

To better understand the potential performance improve-
ments of KML on Lupine, we designed a microbenchmark
in which we issued the null (getppid) system call latency
test in a loop, while inserting a con�gurable amount of CPU
work via another tight loop to control the frequency of the
switching between user and kernel mode: the frequency of
switching decreases as the number of iterations increases.

In an extreme case where the application calls the system
call without doing anything else (0 iterations) KML provides
a 40% performance improvement. However, Figure 10 shows
how quickly the KML bene�ts are amortized away: with
only 160 iterations between the issued system calls the orig-
inal 40% improvement in latency drops below 5%. We �nd
similarly low KML bene�ts for real-world applications in
Section 4.6.

10OSv is similar to Linux in this case in that it loads the application dynam-
ically, which is why nginx and hello exhibit the same memory footprint;
we believe redis exhibits a larger memory footprint because of how the
OSv memory allocator works.

9

System call latency microbenchmark

• Lmbench
• 56% improvement

over microvm from
specialization

49

Figure 8. Memory footprint.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

microvm
lupine-nokml

lupine
lupine-general

hermitux
osv rump

.19.17

La
te

nc
y

null
read
write

Figure 9. System call latency via lmbench.

the memory footprint by repeatedly testing the unikernel
with a decreasing memory parameter passed to the monitor.
Our choice of applications was severely limited by what the
(non-Lupine) unikernels could run without modi�cation; we
only present the memory footprint for three applications
as shown in Figure 8. Unfortunately, HermiTux cannot run
nginx, so we omit that bar.
Figure 8 shows the memory footprint for each applica-

tion. In both application-speci�c and general cases, Lupine
achieves a comparable memory footprint that is even smaller
than unikernel approaches for redis. This is due in part to
lazy allocation. While each of the unikernels shows variation
in memory footprint, the Linux-based approaches (microVM
and Lupine) do not.10 There is no variation because the Linux
kernel binary (the �rst binary to be loaded) is more or less
the same size across applications. The binary size of the ap-
plication is irrelevant if much of it is loaded lazily and even a
large application-level allocation like the one made by redis
may not be populated until later. However, an argument can
be made in favor of eliminating laziness and upfront knowl-
edge of whether su�cient resources will be available for an
application. We further discuss this issue in the context of
immutable infrastructure in Section 6.

Figure 10. Relationship of KML syscall latency improve-
ment to busying-waiting iterations (the more busy-waiting
iterations the less frequent of user-kernel mode switching).

4.5 System call latency microbenchmark
Unikernels claim low system call latency due to the fact that
the application is directly linked with the library OS. Using
Lupine, a Linux system, can achieve similar system call la-
tency as other POSIX-like unikernel approaches. Figure 9
shows the lmbench system call latency benchmark for the
various systems. The results show that Lupine is competitive
with unikernel approaches for the null (getppid), read and
write tests in lmbench. OSv shows the e�ects of implemen-
tation choices as getppid (issued by the null system call
test) is hardcoded to always return 0 without any indirection.
Read of /dev/zero is unsupported and write to /dev/null

is almost as expensive as the microVM case.
Experimentation with lupine-nokml shows that both spe-

cialization and system call overhead elimination play a role.
Specialization contributes up to 56% improvement (achieved
during the write test) over microVM. However, we found no
di�erences in system call latency between the application-
speci�c and general variants (lupine-general) of Lupine. KML
provides Lupine an additional 40% (achieved during the null
test) improvement in system call latency over lupine-nokml.

To better understand the potential performance improve-
ments of KML on Lupine, we designed a microbenchmark
in which we issued the null (getppid) system call latency
test in a loop, while inserting a con�gurable amount of CPU
work via another tight loop to control the frequency of the
switching between user and kernel mode: the frequency of
switching decreases as the number of iterations increases.

In an extreme case where the application calls the system
call without doing anything else (0 iterations) KML provides
a 40% performance improvement. However, Figure 10 shows
how quickly the KML bene�ts are amortized away: with
only 160 iterations between the issued system calls the orig-
inal 40% improvement in latency drops below 5%. We �nd
similarly low KML bene�ts for real-world applications in
Section 4.6.

10OSv is similar to Linux in this case in that it loads the application dynam-
ically, which is why nginx and hello exhibit the same memory footprint;
we believe redis exhibits a larger memory footprint because of how the
OSv memory allocator works.

9

System call latency microbenchmark

• Lmbench
• 56% improvement

over microvm from
specialization
• Additional 40% from

KML
• KML benefit vanishes

quickly in more
realistic workloads

50

Figure 8. Memory footprint.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

microvm
lupine-nokml

lupine
lupine-general

hermitux
osv rump

.19.17

La
te

nc
y

null
read
write

Figure 9. System call latency via lmbench.

the memory footprint by repeatedly testing the unikernel
with a decreasing memory parameter passed to the monitor.
Our choice of applications was severely limited by what the
(non-Lupine) unikernels could run without modi�cation; we
only present the memory footprint for three applications
as shown in Figure 8. Unfortunately, HermiTux cannot run
nginx, so we omit that bar.
Figure 8 shows the memory footprint for each applica-

tion. In both application-speci�c and general cases, Lupine
achieves a comparable memory footprint that is even smaller
than unikernel approaches for redis. This is due in part to
lazy allocation. While each of the unikernels shows variation
in memory footprint, the Linux-based approaches (microVM
and Lupine) do not.10 There is no variation because the Linux
kernel binary (the �rst binary to be loaded) is more or less
the same size across applications. The binary size of the ap-
plication is irrelevant if much of it is loaded lazily and even a
large application-level allocation like the one made by redis
may not be populated until later. However, an argument can
be made in favor of eliminating laziness and upfront knowl-
edge of whether su�cient resources will be available for an
application. We further discuss this issue in the context of
immutable infrastructure in Section 6.

Figure 10. Relationship of KML syscall latency improve-
ment to busying-waiting iterations (the more busy-waiting
iterations the less frequent of user-kernel mode switching).

4.5 System call latency microbenchmark
Unikernels claim low system call latency due to the fact that
the application is directly linked with the library OS. Using
Lupine, a Linux system, can achieve similar system call la-
tency as other POSIX-like unikernel approaches. Figure 9
shows the lmbench system call latency benchmark for the
various systems. The results show that Lupine is competitive
with unikernel approaches for the null (getppid), read and
write tests in lmbench. OSv shows the e�ects of implemen-
tation choices as getppid (issued by the null system call
test) is hardcoded to always return 0 without any indirection.
Read of /dev/zero is unsupported and write to /dev/null

is almost as expensive as the microVM case.
Experimentation with lupine-nokml shows that both spe-

cialization and system call overhead elimination play a role.
Specialization contributes up to 56% improvement (achieved
during the write test) over microVM. However, we found no
di�erences in system call latency between the application-
speci�c and general variants (lupine-general) of Lupine. KML
provides Lupine an additional 40% (achieved during the null
test) improvement in system call latency over lupine-nokml.

To better understand the potential performance improve-
ments of KML on Lupine, we designed a microbenchmark
in which we issued the null (getppid) system call latency
test in a loop, while inserting a con�gurable amount of CPU
work via another tight loop to control the frequency of the
switching between user and kernel mode: the frequency of
switching decreases as the number of iterations increases.

In an extreme case where the application calls the system
call without doing anything else (0 iterations) KML provides
a 40% performance improvement. However, Figure 10 shows
how quickly the KML bene�ts are amortized away: with
only 160 iterations between the issued system calls the orig-
inal 40% improvement in latency drops below 5%. We �nd
similarly low KML bene�ts for real-world applications in
Section 4.6.

10OSv is similar to Linux in this case in that it loads the application dynam-
ically, which is why nginx and hello exhibit the same memory footprint;
we believe redis exhibits a larger memory footprint because of how the
OSv memory allocator works.

9

Figure 8. Memory footprint.

Figure 9. System call latency via lmbench.

the memory footprint by repeatedly testing the unikernel
with a decreasing memory parameter passed to the monitor.
Our choice of applications was severely limited by what the
(non-Lupine) unikernels could run without modi�cation; we
only present the memory footprint for three applications
as shown in Figure 8. Unfortunately, HermiTux cannot run
nginx, so we omit that bar.
Figure 8 shows the memory footprint for each applica-

tion. In both application-speci�c and general cases, Lupine
achieves a comparable memory footprint that is even smaller
than unikernel approaches for redis. This is due in part to
lazy allocation. While each of the unikernels shows variation
in memory footprint, the Linux-based approaches (microVM
and Lupine) do not.10 There is no variation because the Linux
kernel binary (the �rst binary to be loaded) is more or less
the same size across applications. The binary size of the ap-
plication is irrelevant if much of it is loaded lazily and even a
large application-level allocation like the one made by redis
may not be populated until later. However, an argument can
be made in favor of eliminating laziness and upfront knowl-
edge of whether su�cient resources will be available for an
application. We further discuss this issue in the context of
immutable infrastructure in Section 6.

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 0 20 40 60 80 100 120 140 160KM
L

im
pr

ov
em

en
t (

%
)

Iterations between system calls

Figure 10. Relationship of KML syscall latency improve-
ment to busying-waiting iterations (the more busy-waiting
iterations the less frequent of user-kernel mode switching).

4.5 System call latency microbenchmark
Unikernels claim low system call latency due to the fact that
the application is directly linked with the library OS. Using
Lupine, a Linux system, can achieve similar system call la-
tency as other POSIX-like unikernel approaches. Figure 9
shows the lmbench system call latency benchmark for the
various systems. The results show that Lupine is competitive
with unikernel approaches for the null (getppid), read and
write tests in lmbench. OSv shows the e�ects of implemen-
tation choices as getppid (issued by the null system call
test) is hardcoded to always return 0 without any indirection.
Read of /dev/zero is unsupported and write to /dev/null

is almost as expensive as the microVM case.
Experimentation with lupine-nokml shows that both spe-

cialization and system call overhead elimination play a role.
Specialization contributes up to 56% improvement (achieved
during the write test) over microVM. However, we found no
di�erences in system call latency between the application-
speci�c and general variants (lupine-general) of Lupine. KML
provides Lupine an additional 40% (achieved during the null
test) improvement in system call latency over lupine-nokml.

To better understand the potential performance improve-
ments of KML on Lupine, we designed a microbenchmark
in which we issued the null (getppid) system call latency
test in a loop, while inserting a con�gurable amount of CPU
work via another tight loop to control the frequency of the
switching between user and kernel mode: the frequency of
switching decreases as the number of iterations increases.

In an extreme case where the application calls the system
call without doing anything else (0 iterations) KML provides
a 40% performance improvement. However, Figure 10 shows
how quickly the KML bene�ts are amortized away: with
only 160 iterations between the issued system calls the orig-
inal 40% improvement in latency drops below 5%. We �nd
similarly low KML bene�ts for real-world applications in
Section 4.6.

10OSv is similar to Linux in this case in that it loads the application dynam-
ically, which is why nginx and hello exhibit the same memory footprint;
we believe redis exhibits a larger memory footprint because of how the
OSv memory allocator works.

9

Application performance

• Throughput normalized
to microVM
• Application choice

limited by unikernels
• Lupine outperforms

microVM by up to 33%
• Linux implementation is

highly optimized

51

Name redis-get redis-set nginx-conn nginx-sess
microVM 1.00 1.00 1.00 1.00
lupine-general 1.19 1.20 1.29 1.15
lupine 1.21 1.22 1.33 1.14
lupine-tiny 1.15 1.16 1.23 1.11
lupine-nokml 1.20 1.21 1.29 1.16
lupine-nokml-tiny 1.13 1.13 1.21 1.12
hermitux .66 .67
osv .87 .53
rump .99 .99 1.25 .53

Table 4. Application performance normalized to microVM.

4.6 Application performance
Unikernels boast good application performance due to lack
of bloat and the elimination of system call latency. Table 4
shows the throughput of two popular Web applications: the
nginx web server and the redis key-value store, normal-
ized to microVM performance. As in the memory footprint
experiment in Section 4.4, we were severely limited in the
choice of applications by what the various unikernels could
run without modi�cation.

For clients, we used redis-benchmark to benchmark two
common redis commands, get and set, measuring requests
per second. For nginx, we used ab to measure requests per
second. Under the connection-based scenario (nginx-conn),
one connection sends only one HTTP request. Under the
session-based scenario (nginx-sess), one connection sends
one hundred HTTP requests.11 We ran the clients on the
same physical machine to avoid uncontrolled network ef-
fects.
As shown in Table 4, Lupine outperforms the baseline

and all the unikernels. A general kernel (lupine-general) that
supports 20 applications in Section 3 does not sacri�ce appli-
cation performance. The poor performance of the unikernels
is most likely due to the fact that the implementation of ker-
nel functionality in Linux has been highly optimized over
many years thanks to the large Linux community, beyond
what other implementations can achieve. We would like to
have more data points, but the inability to run applications
on the unikernels is a signi�cant challenge: even with these
two extremely popular applications, OSv drops connections
for redis and nginx has not been curated for HermiTux.
Within the Lupine variants, optimizing for space (e.g., -

tiny) can cost up to 10 percentage points (for nginx-conn),
while KML adds at most 4 percentage points (also for nginx-
conn). As in the other experiments, KML and optimizing
for size a�ects performance only a small amount relative to
specialization via con�guration.

5 Beyond Unikernels
Unikernel applications (and their developers) are typically
restricted from using multiple processes, processors, security
11We use the –keepalive option in ab.

rings and users. These restrictions are often promoted as a
feature (e.g., a single address space saves TLB �ushes and
improves context-switch performance [32, 44]) and justi�ed
or downplayed in certain contexts (e.g., many microservices
do not utilize multi-processing [62]) Unfortunately, there is
no room for bending the rules: as a unikernel, an application
that issues fork will often crash or enter into an unexpected
state by a stubbed-out fork implementation (e.g., continuing
as a child where there is no parent). Such rigidity leads to
serious issues for compatibility: as we encountered in our
evaluation, it is unlikely that an existing application will run
unmodi�ed on a unikernel, even if the library OS is more-
or-less binary compatible. Furthermore, there are situations
where relaxing the unikernel restrictions is imperative. As
a trivial example, building the Linux kernel with a single
processor takes almost twice as long as with two processors.
Lupine is, at its core, a Linux system, and relaxing its

unikernel properties is as simple as re-enabling the relevant
con�guration options. This results in a graceful degrada-
tion of unikernel-like performance properties. For example,
rather than crashing on fork, Lupine can continue to exe-
cute correctly even if it begins to experience context switch
overheads. Next, we investigate what the cost would be for
Lupine to support applications that use multiprocessing fea-
tures and whether including this support would adversely
a�ect applications that do not.
We �rst consider the use of multiple address spaces and

experiment with two di�erent scenarios. First, we consider
auxiliary processes that spend most of their time waiting
either waking up or running in a frequency that does not
interfere or create contention on resources with the appli-
cation. We refer to such processes as control processes, i.e.,
processes that are responsible for monitoring the applica-
tion for multiple purposes (e.g., shells, environment setup,
recovery and analysis, etc.). In practice, it is extremely com-
mon, for example, to �nd a script that forks an application
from a shell after setting up some environment variables.
Lack of support for this case from existing POSIX-compliant
unikernel implementations severely limits their generality.
We design an experiment to show that such uses of multi-
ple address spaces are not harmful to unikernel-like perfor-
mance. Speci�cally, we measure the system call latencies
after launching 2i (i = 0, 1, . . . , 10) control processes, using
sleep as the control process. As expected, in all cases, there
is no latency increase; all measurements (averaged over 30
runs) are within one standard deviation.

Second, we consider co-existing processes that contend re-
sources with each other and may experience context switch
overheads. To quantify these overheads, we compare the
context switch overheads for threads that do not switch ad-
dress spaces (to approximate unikernel behavior) versus pro-
cesses. We use the messaging benchmark in perf [10] where
2i (i = 0, 1, 2, 3, 4) groups (10 senders and 10 receivers per
group) of threads or processes message each other via UNIX

10

Takeaways

• Specialization is important:
• 73% smaller image size, 59% faster boot time, 28% lower memory footprint and 33%

higher throughput than the state-of-the-art VM
• Specialization per application may not be:

• 19 options (lupine-general) cover at least 83% of downloaded apps with at most 4%
reduction in performance

• System call overhead elimination may not be:
• only 4% improvement for macrobenchmark, unlike 40% for microbenchmarks

• Lupine avoids common pitfalls: has support for unmodified Linux
applications, optimized implementation

52

Lupine is still Linux

• Graceful degradation of unikernel properties

• Fork crashes unikernels, not Lupine
• Virtually no overhead to support multiple address spaces

• Especially for control processes

• At worst 8% overhead to support multiple processors

Unachieved unikernel benefits

• Language-based unikernel benefits
• Powerful static analysis / whole-system optimization

• Some unikernels (e.g., Solo5-based) have been proven to run on a
thinner unikernel monitor interface
• Potentially better security, debugging opportunities, unikernel as process, etc.
• Linux does not (yet)

Related work

• Unikernel-like work that leverages Linux
• LightVM (TinyX): VMs can be as light as containers
• X-Containers: Xen paravirt for Linux to be a libOS
• UKL: modify Linux build to include kernel call to application main

• Linux configuration studies
• Alharthi et al.: 89% of 1530 studied vulnerabilities nullified via config specialization
• Kurmus et al.: 50-85% of attack surface reduction via configuration

Getting Lupine benefits into community

• Most benefits are achieved through specialized config
• But lupine-general.config can run top 20 Docker containers

• Challenges/risks
• How do we know lupine-general is general enough?

• Research needed: discovery vs. failover vs. ?
• Tension with container ecosystem (kata agent à more general kernel config)

• Research needed: kernel configuration-aware design?

Lupine Conclusion

• Unikernels and library OS seem attractive
• But trying to achieve generality/POSIX in unikernels is not worth it

• Linux can already behave like a unikernel!
• Specialization via configuration
• Can maintain Linux community and engineering effort in past three decades

• Can we apply these techniques to virtualization-enabled containers?

Thank you!

• https://github.com/hckuo/Lupine-Linux
• https://nabla-containers.github.io/

• djwillia@us.ibm.com

58

https://github.com/hckuo/Lupine-Linux
https://nabla-containers.github.io/
mailto:djwillia@us.ibm.com

