Lupine Linux
“A Linux in Unikernel Clothing”

Dan Williams (IBM)

With Hsuan-Chi (Austin) Kuo (UIUC + IBM), Ricardo Koller (IBM), Sibin
Mohan (UIUC)

Roadmap

* Context
e Containers and isolation
* Unikernels
* Nabla containers

* Lupine Linux
* Alinux in unikernel clothing

* Concluding thoughts

Containers are great!

* Have changed how applications are packaged, deployed and
developed

* Normal processes, but “contained”
* Namespaces, cgroups, chroot

* Lightweight
 Start quickly, “bare metal”
* Easy image management (layered fs)

* Tooling/orchestration ecosystem

w

But...

* Large attack surface to the host
* Limits adoption of container-first architecture

 Fortunately, we know how to reduce attack surface!

High level of
abstraction
(e.g., system

Host Kernel with
namespacing
(e.g., Linux)

Containers

S

Deprivileging and unsharing kernel functionality

————————— 1 Low level of High level of

* Virtual machines (VMS) abstraction abstraction

I I
| | .
* Guest kernel @ : | (e.g, virtual (e.g., system
o kata : I hardware)
* Thin interface | :
I I
|
|
|
|

Guest Kernel
(e.g., Linux)

Monitor Process
(e.g., QEMU)
Host Kernel/Hypervisor
(e.g., Linux/KVM)

VMs Containers

Host Kernel with
namespacing
(e.g., Linux)

w

Deprivileging and unsharing kernel functionality

————————— 1 Low level of High level of

* Virtual machines (VMS) abstraction abstraction

I I
| | .
* Guest kernel @ : | (e.g, virtual (e.g., system
o kata : I hardware)
* Thin interface | :
I I
. |
|
|
|

* Userspace kernel
* Performance issues

Guest Kernel
(e.g., Linux)

Monitor Process
(e.g., QEMU)
Host Kernel/Hypervisor
(e.g., Linux/KVM)

VMs Containers

Host Kernel with
namespacing
(e.g., Linux)

[e)}

But wait? Aren't VMs slow and heavyweight?

Boot time?

* Memory footprint?

Especially for environments
like serverless??!!

VMs are becoming lightweight

* Thin monitors
e e.g., AWS Firecracker
* Reduce complexity for performance (e.g., no PCl)

FTTTTTTT T 1 Low level of

: abstraction

|
I

I 1 (e.g., virtual
: : hardware)
I I

I I

I

I

I

I

Guest Kernel
(e.g., Linux)

Monitor Process
(e.g., QEMU)

Host Kernel/Hypervisor
(e.g., Linux/KVM)

VMs

CDF

VMs are becoming lightweight

* Thin monitors

0.8

0.6 |
0.4 |
0.2 |

1r

ol

e e.g., AWS Firecracker
* Reduce complexity for performance (e.g., no PCl)

- CloudHV

T
FC-pre
FC ——

QEMU

0

50 100 150 200 250
Boot time (ms)

Firecracker boot times as reported
in Agache et al., NSDI 2020

FTTTTTTT T 1 Low level of
: abstraction
1 (e.g., virtual
: hardware)
I
I

Guest Kernel
(e.g., Linux)

Monitor Process

Host Kernel/Hypervisor
(e.g., Linux/KVM)

VMs

CDF

VMs are becoming lightweight

* Thin monitors

0.8

0.6

0.4 |
0.2 |

e e.g., AWS Firecracker

* Reduce complexity for performance (e.g., no PCl)

T

FC-pre

E FC ——
[CloudHV
[QEMU

0 50 100 150 200 250

Boot time (ms)

Firecracker boot times as reported
in Agache et al., NSDI 2020

My VM is Lighter (and Safer) than your Container

Filipe Manco Costin Lupu Florian Schmidt

NEC Laboratories Europe Univ. Politehnica of Bucharest NEC Laboratories Europe
cost 1l

Jose Mendes Simon Kuenzer Sumit Sati
NEC Laboratories Europe NEC Laboratories Europe NEC Laboratories Europe

i vicky 1

Kenichi Yasukata Costin Raiciu Felipe Huici
NEC Laboratories Europe Univ. Politehnica of Bucharest NEC Laboratories Europe
i .
ABSTRACT CCS CONCEPTS

- Software and its engineering —» Virtual machines;

ccccc

1 INTRODUCTION

&
and LXC [25]

Manco et al., SOSP 2017

:‘ “““““ 1 Low level of
I : abstraction
I 1 (e.g., virtual
: : hardware)
I I

I I

I

I Guest Kernel

: (e.g., Linux)

Monitor Process

Host Kernel/Hypervisor
(e.g., Linux/KVM)

=
o

VMs are becoming lightweight

* Thin monitors

e e.g., AWS Firecracker

* Reduce complexity for performance (e.g., no PCl)

* Thin guests?

e Userspace: (e.g., Ubuntu --> Alpine Linux)
* Kernel configuration (e.g., TinyX, Lupine)

* Unikernels

Euroéys 2020

KubeCon 2020

“““““ 1 Low level of
abstraction

I |

I |

I 1 (e.g., virtual
: : hardware)
I I

I I

I

I

I

I

Guest Kernel |

Monitor Process

Host Kernel/Hypervisor
(e.g., Linux/KVM)

VMs

[EnY

1

Unikernels are thin guests to the extreme

* An application linked with components
* Run on (like) abstraction

* Single CPU

* Language-specific
* MirageOS (OCaml) o~
* IncludeOS (C++)

e Legacy-oriented
* Rumprun (NetBSD-based)
* Hermitux

* OSv Claim binary compatibility

with Linux

VM

12

Deprivileging and unsharing kernel functionality

. _ TSI 1 Low level of High level of
* Virtual machines (VMs) ' abstraction abstraction

|
|
* Guest kernel @ : | (e.g, virtual (e.g., system
o kata : I' hardware)
* Thin interface |
|
. |
|
|
|

* Userspace kernel
Guest Kernel
* E.g., UML (e.g., Linux)

* Performance issues
: : Monitor Process

e Library OS / unikernel \V/
* Only-what-you need
* Lightweight

Host Kernel with
namespacing
(e.g., Linux)

Host Kernel/Hypervisor
(e.g., Linux/KVM)

VMs Containers

[EnY
w

What we learned from Nabla containers V

* Nabla containers are unikernels as

processes

* Can achieve or exceed lightweight
characteristics of containers

* Interfaces are what matter, not
virtualization HW

* But we lose a lot: Generality

e Lupine Linux: applying unikernel
techniques to Linux VMs

HotCloud 16, HotOS ‘17

HotCloud ’18, SOCC ‘18

Eurosys '20

Unikernel as Process

Application
libraries, runtimes

Library OS
TCP/IP

What we learned from Nabla containers V

* Nabla containers are unikernels as

processes

* Can achieve or exceed lightweight
characteristics of containers

* Interfaces are what matter, not
virtualization HW

* But we lose a lot: Generality

e Lupine Linux: applying unikernel
this techniques to Linux VMs
talk

HotCloud 16, HotOS ‘17

HotCloud ’18, SOCC ‘18

Eurosys '20

Unikernel as Process

Application
libraries, runtimes

Library OS
TCP/IP

Lupine Linux Overview and Roadmap

* Introduction

e Lu p| ne Linux Application (container) Unikernel-like techniques App rootfs

* Specialization Application manifest
 System Call Overhead | SN e LGanilz
Elimination System Call
* Putting it together Overhead v
. Ellmmatlon »Lupine Linux
* Evaluation o via KML Unikernal”
* Discussion

e Related Work

[Eny
[e)]

Unikernels are great

* Small kernel size
* Fast boot time

* Performance

* Security

Unikernels are great... but

* Small kernel size
* Fast boot time

* Performance

* Security

Lack full Linux support
* Hermitux: supports only 97 system calls
* OSv:

 application needs to be compiled with —PIE, can’t use TLS

« Static-linked applications are not supported
* Fork() , execve() are not supported
* Special files are not supported such as /proc
 Signal mechanism is not complete

* Rumprun: only 37 curated applications

 Community is too small to keep it rolling

Lupine Linux
“Unikernel”

Can Linux
> be as small as
> boot as fast as
> outperform
unikernels?

Can Linux
‘ > be as small as
upine L > boot as fast as
> outperform
unikernels?

* Spoiler alert: Yes!
* 4MB image size
* 23 ms boot time
* Up to 33% higher throughput

Lupine Linux Overview and Roadmap

* Lupine Linux
* Specialization
» System Call Overhead
Elimination

e Putting it together
* Evaluation
* Discussion
* Related Work

Application (container) Unikernel-like techniques

Specialization
via Kconfig

Application manifest

—

Linux source

System Call
Overhead
Elimination
via KML

App rootfs

l Lupine Linux

“Unikernel”

N
=

Lupine Linux Overview and Roadmap

e Lu p| ne Linux Application (container) Unikernel-like techniques App rootfs

. Specialization Application manifest

Specialization
' via Kconfig

* System Call Overhead
Elimination System Call
* Putting it together Overhead v
& & Elimination »Lupine Linux
* Evaluatlon Linux source Ve S “Unikernel”
* Discussion

e Related Work

N
N

Unikernel technique #1: Specialization

File Edit View Search Terminal Help

4 Unikernels inCIUde Only What .config - Linux/i386 3.0.0 Kernel Configuration
iS needed Linux/i386 3.0.0 Kernel Configuration

Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <M> module < >

i LanX |S Very COangU ra ble !*] nableloaale module support --->

-*- Enable the block layer --->

° Kconﬁg Processor type and features --->
Power management and ACPI options --->
H Bus options (PCI etc.) --->
°
161000 Opt|0ns Executable file formats / Emulations --->
. -*- Networking support --->
* Drivers Device Drivers --->

Firmware Drivers --->

* Filesystems
* Processor features < Exit > < Help >

Specializing Linux through configuration

. . All 16000 Linux microvm 833
e Start with Firecracker configurations (5%)

microvm configuration

* Assuming unikernel-like

lupine-base 283 Application speciicand 550
workload, (I:an remove (34%) ecessary options (66%)
even more:
* Application-specific
options
. . 11 89 150
* Multiprocessing (56%) (16%) (28%)

* HW management -

B Application specific ™ Multiprocessing © HW management

24

Application-specific options

Example: system calls

Kernel services
* e.g., /proc, sysctl

Kernel library
* Crypto routines
* Compression routines

Debugging/information

Option Enabled System Call(s)

ADVISE SYSCALLS | madvise, fadvise64

AIO io_setup, io_destroy, io_submit, io_cancel, io_getevents
BPF_SYSCALL bpf

EPOLL epoll_ctl, epoll_create, epoll_wait, epoll_pwait
EVENTFD eventfd, eventfd2

FANOTIFY fanotify_init, fanotify_mark

FHANDLE open_by_handle_at, name_to_handle_at

FILE_LOCKING
FUTEX
INOTIFY_USER
SIGNALFD
TIMERFD

flock

futex, set_robust_list, get_robust_list

inotify_init, inotify_add_watch, inotify_rm_watch
signalfd, signalfd4

timerfd_create, timerfd_gettime, timerfd_settime

Other assumptions from unikernels

* Unikernels are not intended for multiple processes

* Related to isolating, accounting for processes
* Cgroups, namespaces, SElinux, seccomp, KPTI

« SMP, NUMA
* Module support

* Unikernels are not intended for general hardware
* Intended to run as VMs in the cloud
* microVM removes many drivers and arch-specific configs
e Lupine removes more, including power mgmt

How to get an app-specific kernel config

. . All 16000 Linux microvm 833
e Start with lupine-base configurations (5%)

e Manual trial and error
* Guided by application

output lupine-base 283 Application specifieand 550
 E.g., the futex facility (34%) ecessary options (66%)
returned an unexpected
error code
=> CONFIG_FUTEX
11 89 150
(56%) (16%) (28%)
* In general, this is a hard -

problem
B Application specific ™ Multiprocessing © HW management

27

Lupine Linux Overview and Roadmap

e Lu p| ne Linux Application (container) Unikernel-like techniques App rootfs

* Specialization Application manifest
 System Call Overhead | SN e LGanilz
Elimination System Call
* Putting it together Overhead v
. Ellmmatlon »Lupine Linux
* Evaluation o via KML Unikernal”
* Discussion

e Related Work

N
[0

Unikernel technique #2: System call overhead

elimination

* Kernel Mode Linux (KML)
* Non-upstream patch (latest Linux 4.0)
* Execute unmodified apps in kernel mode
e User program can directly access the kernel

|H I”

in libc e.g., musl

* Replace “syscall” instruction with “cal

- _asm__ _ volatile ("syscall"™ : "=a"(ret) :
+ _asm__ _ volatile ("call *%1" : "=a"(ret) : "r"(_kml),

Ilall(n), IIDII(al), IISII(aZ)’
Ildll(a3), llr\ll(r‘le), llr\ll(r\8),
Ilr\ll(r\g) : "r‘CX", llr‘llll, Ilmemor‘yll);

* Requires relink for static binaries
e Less invasive than build modifications for unikernels

Lupine Linux Overview and Roadmap

e Lu p| ne Linux Application (container) Unikernel-like techniques App rootfs

* Specialization Application manifest
 System Call Overhead | SN e LGanilz
Elimination System Call
* Putting it together Overhead v
. Ellmmatlon »Lupine Linux
* Evaluation o via KML Unikernal”
* Discussion

e Related Work

w
o

Putting it all together

Linux kernel source

Unmodified
app binary

Putting it all together

Application-specific requirements (manifest)

(2]
i

Unmodified

Application-specific

Lupine config
app binary

Linux kernel source

Specialization

w
N

Putting it all together

Application-specific requirements (manifest)

c
O . . .o
= Application-specific
N Lupine config
©
(@] o
g Linux kernel source
(%]
= c
888
Q +
Ec D
v = =
L€
A ° 3

Unmodified
app binary

KML-enabled
musl libc

w
w

Putting it all together

Application-specific requirements (manifest)

Application-specific

R R Unmodified
Linux kernel source —— app binary

Specialization

KML-enabled
musl libc

System call
overhead
elimination

Application-specific
Lupine kernel image

w
N

Remaining issues

* How to build a root filesystem for Linux
e Container images are root filesystems already
* Contains both application and necessary libraries

* How to start the (single) application
* Linux kernel parameter “init” specifies first program, usually “/sbin/init”
* Boot the kernel with “init=/app”

* Caveats:
* May need some simple setup (e.g., network)
* Application-specific!

Putting it all together

Application-specific requirements (manifest)

Application-specific

R R Unmodified
Linux kernel source —— app binary

Specialization

KML-enabled
musl libc

System call
overhead
elimination

Application-specific
Lupine kernel image

w
[e)}

Putting it all together

Application-specific requirements (manifest)

Application-specific

Lupine config

Linux kernel source ——

Specialization

System call
overhead
elimination

Application-specific
Lupine kernel image

Metadata
entrypoint

. Unmodified
env variables)
app binary

KML-enabled
musl libc

w
~

Putting it all together

Application-specific requirements (manifest)

< S ” Metadata

= Application-specific Application- e —

3 : startup script env variables app binary
§ Linux kernel source —— (“init”)

KML-enabled
musl libc

System call
overhead
elimination

Application-specific :
Lupine kernel image Lupine app “rootfs

w
[0

Lupine Linux Overview and Roadmap

e Evaluation
* Discussion
e Related Work

Application (container) Unikernel-like techniques

Specialization
via Kconfig

Application manifest

—

Linux source

System Call
Overhead
Elimination
via KML

App rootfs

. Lupine Linux

“Unikernel”

w
(s}

Evaluation setup

* Machine setup
« CPU: Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.80GHz
* Mem: 16 GB

* VM setup
* Hypervisor : firecracker
 1VCPU, 512 MB Mem
e Guest: Linux 4.0 with and without KML patches

Configuration Diversity

* Manually determined app-specific configurations
* 20 top apps on Docker hub (83% of all downloads)

* Only 19 configuration options required to run all
20 applications: lupine-general

20 . . | | | |
18
o 16 .
14 .
12 .
10 .

8 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18

Support for top x apps

options

Number confi

20

L # Options atop
Name Downloads | Description i
lupine-base

nginx 1.7 Web server 13
postgres 1.6 Database 10
httpd 1.4 Web server 13
node 1.2 Language runtime 5
redis 1.2 Key-value store 10
mongo 1.2 NOSQL database 11
mysgql 1.2 Database 9
traefik 1.1 Edge router 8
memcached 0.9 Key-value store 10
hello-world 0.9 C program “hello” 0
mariadb 0.8 Database 13
golang 0.6 Language runtime 0
python 0.5 Language runtime 0
openjdk 0.5 Language runtime 0
rabbitmq 0.5 Message broker 12
php 0.4 Language runtime 0
wordpress 0.4 PHP/mysql blog tool 9
haproxy 0.4 Load balancer 8
influxdb 0.3 Time series database 11
elasticsearch 0.3 Search engine 12

Table 3. Top twenty most popular applications on Docker
Hub (by billions of downloads) and the number of additional
configuration options each requires beyond the lupine-base
kernel configuration. ?

Kernel image size

Megabytes

ONPROOOONPAD

mj Cro VM

N
N

Kernel image size

* Configuration is effective 181 1
. 4 MB s iof
« 27% (hello) - 33% of g3
microvm U g e

* Even lupine-general
produces smaller images

than Rump, OSv

Boot time

* Measured via I/O port
write from guest

* OSv boot heavily
depends on FS choice

Milliseconds

60
50
40
30
20
10

7 lq

I
S

Boot time

* Measured via I/O port
write from guest

* OSv boot heavily
depends on FS choice

* Lupine boot time
without KML*

* Even lupine-general
boots faster than
Hermitux, OSv

Milliseconds

NWHAO10)
OCOOOO

—h
(>l

m ki, x
en

*KML incompatibility with CONFIG_PARAVIRT

N
¢

Memory Footprint

* Repeatedly tested app
with decreasing
memory allotment

* Choice of apps limited
by unikernels

50

g 40

Z 30

S 20

(O]

= 10
0

/77/'0,0 ”

N I heIIoI B an-an nlginx eve redis — | i
a N i
5, N § . H

h Os, fonp

Memory Footprint

* Repeatedly tested app
with decreasing
memory allotment

* Choice of apps limited
by unikernels

* No variation in lupine:
lazy loading makes
binary size irrelevant

50

g 40

Z 30

S 20

(O]

= 10
0

N
~

B hello o nginx oo redis ==—~1
i N _
I % N] m § A—ﬁ-
Miey, lyp,; lyp,; herp,. Osy, um
oV e "e-9en, it P

€ray

System call latency microbenchmark

0.1 el
| e null =22
° 08 F read £ u
Lmbench 0.08 read =
g 0.06 -
o
S 0.04 F_ 1
0.02 ~>< g—ﬁ E |
O dindel, ATV B | P2 TR, S 1 ==
uy /76’/-/7) . OS[, /.(//)7,0

(&)
,Ol//’? . %, v

System call latency microbenchmark

0.1 _,\g_,\’\
' _—— null =22
R read == ™

1

0.06

Latency

* 56% improvement

) 0.04
over microvm from oo | é'ﬁ ﬁh éh %ﬂ
specialization \

1

E

0
e, (/,O/ /(/,0/ (//0/ /7@/'
/¢ O /7@ /7@ /7@ /7)

4’77/ %/

OSI/

/Z/ /)7,0

N
Vo)

System call latency microbenchmark

AN
0.1 =T
2o P null EE=2=2
® . B read === ™
Lmbench 0.08 read =
0.06

* 56% improvement 004
over microvm from

' <l
specialization .

/
/)’/oro 0'0/’7@ K Ne ", ”7@ /7@,,77 OS" ,0/'7,0

* Additional 40% from "%k,,, 6
KML 7

 KML benefit vanishes
quickly in more
realistic workloads

1

Latency

o
o~

0.35
0.3
0.25

0.15
0.1
0.05

0 20 40 60 80 100 120 140 160
Iterations between system calls

o

KML improvement (%)
O
N

Ul
o

Application performance

* Throughput normalized
to microVM

 Application choice
limited by unikernels

* Lupine outperforms
microVM by up to 33%

* Linux implementation is
highly optimized

Name redis-get | redis-set | nginx-conn | nginx-sess
microVM 1.00 1.00 1.00 1.00
lupine-general 1.19 1.20 1.29 1.15
lupine 1.21 1.22 1.33 1.14
lupine-tiny 1.15 1.16 1.23 1.11
lupine-nokml 1.20 1.21 1.29 1.16
lupine-nokml-tiny | 1.13 1.13 1.21 1.12
hermitux .66 .67

osv .87 .53

rump .99 .99 1.25 .53

Table 4. Application performance normalized to microVM.

Ul
iy

Takeaways

 Specialization is important:

* 73% smaller image size, 59% faster boot time, 28% lower memory footprint and 33%
higher throughput than the state-of-the-art VM

 Specialization per application may not be:

* 19 options (lupine-general) cover at least 83% of downloaded apps with at most 4%
reduction in performance

* System call overhead elimination may not be:
* only 4% improvement for macrobenchmark, unlike 40% for microbenchmarks

* Lupine avoids common pitfalls: has support for unmodified Linux
applications, optimized implementation

Lupine is still Linux

* Graceful degradation of unikernel properties

* Fork crashes unikernels, not Lupine

* Virtually no overhead to support multiple address spaces
* Especially for control processes

* At worst 8% overhead to support multiple processors

Unachieved unikernel benefits

* Language-based unikernel benefits
* Powerful static analysis / whole-system optimization

* Some unikernels (e.g., Solo5-based) have been proven to run on a
thinner unikernel monitor interface
* Potentially better security, debugging opportunities, unikernel as process, etc.
* Linux does not (yet)

Related work

* Unikernel-like work that leverages Linux

* LightVM (TinyX): VMs can be as light as containers
* X-Containers: Xen paravirt for Linux to be a libOS
e UKL: modify Linux build to include kernel call to application main

* Linux configuration studies

e Alharthi et al.: 89% of 1530 studied vulnerabilities nullified via config specialization
* Kurmus et al.: 50-85% of attack surface reduction via configuration

Getting Lupine benefits into community

* Most benefits are achieved through specialized config
* But can run top 20 Docker containers

* Challenges/risks
* How do we know lupine-general is general enough?
* Research needed: discovery vs. failover vs. ?

* Tension with container ecosystem (kata agent = more general kernel config)
* Research needed: kernel configuration-aware design?

Lupine Conclusion

* Unikernels and library OS seem attractive
* But trying to achieve generality/POSIX in unikernels is not worth it

* Linux can already behave like a unikernel!

 Specialization via configuration
e Can maintain Linux community and engineering effort in past three decades

e Can we apply these techniques to virtualization-enabled containers?

Thank you!

* https://github.com/hckuo/Lupine-Linux
e https://nabla-containers.github.io/

* djwillia@us.ibm.com

58

https://github.com/hckuo/Lupine-Linux
https://nabla-containers.github.io/
mailto:djwillia@us.ibm.com

