
Improving Linux-Kernel Tests for LockDoc
with Feedback-driven Fuzzing

Alexander Lochmann
TU Dortmund

Department of Computer Science 6
Dortmund, Germany

Robin Thunig
TU Dortmund

Department of Computer Science 12
Dortmund, Germany

Horst Schirmeier
TU Dortmund

Department of Computer Science 12
Dortmund, Germany

Abstract
LockDoc is an approach to extract locking rules for kernel
data structures from a dynamic execution trace recorded
while the system is under a benchmark load. These locking
rules can e.g. be used to locate synchronization bugs. For
high rule precision and thorough bug finding, the approach
heavily depends on the choice of benchmarks: They must
trigger the execution of as much code as possible in the
kernel subsystem relevant for the targeted data structures.
However, existing test suites such as those provided by the
Linux Test Project (LTP) only achieve – in the case of LTP –
about 35 percent basic-block coverage for the VFS subsystem,
which is the relevant subsystem when extracting locking
rules for filesystem-related data structures.
In this article, we discuss how to complement the LTP

suites to improve the code coverage for our LockDoc scenario.
We repurpose syzkaller – a coverage-guided fuzzer with the
goal to validate the robustness of kernel APIs – to 1) not
aim for kernel crashes, and to 2) maximize code coverage
for a specific kernel subsystem. Thereby, we generate new
benchmark programs that can be run in addition to the LTP,
and increase VFS basic-block coverage by 26.1 percent.

1 Introduction
Over a period of more than a decade, the Linux kernel under-
went a transformation from Linux 2.0’s coarse-grained and
sturdy Big Kernel Lock [1] to more and more fine-grained
synchronization on the granularity of kernel subsystems
and even single data structures [1, 11, 14]. While reducing
lock contention and scaling better to multi- and many-core
platforms, fine-grained locking is error-prone and has led to
numerous synchronization bugs in the past. This situation is
exacerbated by incomplete, inconsistent and in parts faulty
locking documentation.
Our LockDoc approach [10] addresses these issues by

tracing locking patterns and data-structure accesses in a
running Linux kernel under load, and deriving locking rules
– i.e., which locks in which particular order must be taken to
access a specific data-structure element – from this trace. The
derived locking rules can consequently be used to validate
or generate documentation, and to locate synchronization
bugs. However, locking-rule quality and the capability to
find bugs also in remote parts of the kernel heavily depends
on how the system is put under load – i.e. on the choice of

benchmark programs that trigger the execution of kernel
code by invoking system calls. Focusing on the Linux kernel’s
Virtual File System (VFS) subsystem in our LockDoc study
[10], we relied on a filesystem-specific subset of the Linux
Test Project (LTP) [4, 7] benchmark suites to provoke lock
operations for and accesses to VFS data structures.

However, when we actually measure basic-block test cov-
erage in Linux with kcov [18] while running all LTP suites
that even remotely seem to be related to VFS, our results in-
dicate that only about 35 percent of the kernel’s basic blocks
associated with the VFS subsystem are actually executed.
Although it is not reasonable to expect 100 percent coverage
– e.g., depending on the kernel configuration there may be
several filesystems compiled in that are not associated with
an actual mount point on the test system – there is certainly
room for improvement.

In this article, we propose an approach to increase kernel-
code coverage for LockDoc: We repurpose syzkaller [17], a
coverage-guided fuzzer with the goal to validate the robust-
ness of kernel APIs, to not aim for kernel crashes but only
for basic-block coverage in a particular kernel subsystem.
The thereby generated new benchmark programs can be run
in addition to the LTP suites, and increase VFS basic-block
coverage by 26.1 percent from 34.7 percent (LTP only) to
43.8 percent (LTP + generated benchmarks).

To summarize, the contributions of this article are:

• A quantitative analysis of the LTP’s capability to trig-
ger code execution in Linux’s VFS subsystem (Sec. 3).

• An approach to repurpose a coverage-guided kernel
fuzzer to generate benchmark programs that target
a particular kernel subsystem and do not crash the
system (Sec. 3).

• An evaluation demonstrating that the combination
of LTP and generated benchmark programs covers
significantly more VFS basic blocks than LTP alone
(Sec. 4).

Sec. 2 discusses related work, and Sec. 5 concludes the paper.

2 Related Work
Linux-kernel test coverage has been a research topic since
Linux’s very early days. Iyer [5] analyzes the LTP’s cov-
erage of Linux 2.4 kernel code with GCOV, and reports

1

that parts of the fs/ kernel source-code subtree have line-
coverage values between 0.0 (especially for most of the ac-
tual filesystem implementations) and 29.5 percent (for the
generic, filesystem-agnostic part). Larson [8] distills detailed
HTML reports from GCOV results obtained from Linux 2.5,
reports that the LTP covers about 90 percent of all kernel
basic blocks that are executed by a much larger benchmark
corpus, and concludes that coverage results should drive
further LTP development. Yoshioka [19] describes a Linux
regression test framework named crackerjack and the accom-
panying branch-coverage test tool btrax, and demonstrates
coverage advantages over LTP. The Lachesis approach [2]
by Claudi and Dragoni provides a test suite focusing on
real-time extensions for Linux.

While OS-kernel fuzzing approaches date back to at least
1991 with Le’s tsys [9] or to 2006 with trinity by Jones et
al. [6], modern kernel-fuzzing approaches like Vyukov’s
syzkaller [17] are coverage-guided. For example, Nossum
and Casasnovas [13] port the prominent user-mode fuzzer
AFL to the kernel and uncover filesystem bugs. DIFUZE by
Corina et al. [3] fuzzes kernel drivers to detect bugs, and
is aided by static analysis that determines the necessary in-
put structure. Schumilo et al.’s kernel AFL (kAFL) [15] is a
target-OS agnostic fuzzing approach based on a hypervisor
and hardware support in the form of Intel’s processor trace
feature. Shi et al. [16] demonstrate the practical application
of existing kernel-fuzzing tools to several Linux versions,
and provide an overview of several other kernel-fuzzing
approaches.
To the best of our knowledge, the approach described in

this paper is the first to repurpose coverage-guided kernel
fuzzing to generate benchmarks that complement existing
test suites.

3 Approach
The quality of LockDoc’s results heavily depends on the num-
ber of observed lock operations and data-structure accesses
[10]. Due to static-analysis limitations (e.g. pointer aliasing),
it is generally infeasible to statically identify all code loca-
tions that make such accesses. For similar reasons it is gener-
ally infeasible to statically determine all contexts from which
these code locations are called, and consequently, which
locks are possibly held when the data-structure accesses are
made. LockDoc therefore resorts to dynamic analysis, i.e.
the observation of the running kernel under a benchmark
load. As LockDoc focuses on the VFS subsystem to determine
locking rules e.g. for the inode data structure, the problem at
hand therefore is to find and run benchmarks that maximize
kernel-code coverage for this particular subsystem.

The literature proposes several metrics for code coverage,
e.g., path, branch or line coverage [12, 20]. For this paper,
we chose basic-block coverage over line coverage, because it
better captures the actual fraction of the code that is being

Test Suite # Tests Covered VFS BBs (%)

dio 30 8312 11.0%

fcntl-locktests 1 2420 3.2%

filecaps 1 2518 3.3%

fs 65 17 495 23.2%

fs_ext4 4 13 081 17.3%

fs_perms_simple 18 5081 6.7%

fsx 1 6572 8.7%

io 2 6817 9.0%

syscalls 1181 24 217 32.1%

Total 1303 26 229 34.7%
Table 1. Covered basic blocks for each LTP test suite in the
VFS subsystem. In total, our Linux 4.10 kernel build consists
of 342,732 basic blocks, and the VFS subsystem of 75,531
basic blocks, respectively.

executed. One line of code, for example, can be mapped to
several basic blocks. Hence, having one particular line cov-
ered does not necessarily mean all basic blocks are covered.
Inversely, covering all basic blocks means all lines of code
that have been compiled are covered.

For the Linux kernel, there is already a good starting point
for executing a large fraction of kernel code: the Linux Test
Project (LTP) [4, 7], of which we already used a VFS-related
subset for earlier work on LockDoc [10]. LTP’s aim is to “val-
idate the reliability, robustness, and stability of Linux” [4]. It
consists of several individual tests that are grouped into test
suites. Each of these suites targets a particular subsystem
or a particular kernel functionality such as the IPC mecha-
nism or the VFS subsystem. The scope of the tests ranges
from stress testing to regression testing. Since those tests are
manually composed, only a limited subset of each system
call’s parameter space can be covered, resulting in a limited
amount of code coverage.
The VFS-related LTP test suites generate a basic-block

coverage of 34.7 percent for the VFS subsystem. We deter-
mined the coverage for each test individually of the fol-
lowing test suites1: dio, fcntl-locktests, filecaps, fs, fs_ext4,
fs_perms_simple, fsx, io, and syscalls. As the fs_readonly suite
only runs a subset of fs on a read-only mounted filesystem,
we skipped it. Tab. 1 shows the number of VFS basic blocks
covered by each suite.
The numbers indicate that there is still room for cover-

age improvement – and, hence, higher LockDoc precision
and bug-finding effectiveness. It turns out that fuzzing (see
Sec. 2) in its coverage-guided feedback variant already has
1We use git tag 20190115 of the LTP repository.

int main(void)
{
syscall(__NR_mmap, 0x1ffff000, 0x1000, 0, 0x32,

-1, 0);
syscall(__NR_mmap, 0x20000000, 0x1000000, 7, 0

x32, -1, 0);
syscall(__NR_mmap, 0x21000000, 0x1000, 0, 0x32,

-1, 0);

(uint32_t)0x20002480 = 0x20000340;
memcpy((void*)0x20000340, "\x12", 1);

(uint32_t)0x20002484 = 1;

(uint32_t)0x20002488 = 0;
syz_read_part_table(0, 1, 0x20002480);
return 0;

}

Listing 1. An excerpt of a program generated by fuzzing the
Linux Kernel using Syzkaller [17].

coverage maximization as one of its main goals. A coverage-
guided kernel fuzzer that recently came to fame is Vyukov’s
syzkaller [17], which fuzzes the Linux kernel by randomly
generating user programs that use the system-call interface.
For each generated program (see an example in Listing 1),
syzkaller determines the resulting basic-block coverage. Only
programs that cover at least one new basic block are stored
in the database. syzkaller’s objective is to trigger kernel bugs,
and to minimize the program that triggered the bug.
We modified syzkaller to 1) ignore programs triggering

a bug, and to 2) only store programs that increase the cov-
erage in the VFS subsystem. We furthermore disabled a set
of system calls that are not related to the VFS to improve
fuzzing speed. The resulting programs are intended to cover
more code, and thus cover more memory accesses, which
in turn can be used by LockDoc. Note that these generated
benchmark programs cannot (directly) be used as regression
tests for the kernel, as they do not make any explicit output
that can be used to determine test success.

4 Evaluation
In this section, we first present our evaluation setup in
Sec. 4.1, and then show our results in Sec. 4.2.

4.1 Setup
We conduct our experiments on an x86 64-bit Linux Kernel
4.10. The kernel is built without module support, and uses a
minimal kernel configuration: Network support is active as
well as the essential drivers for the root filesystem and for
running in a paravirtualized QEMU -based virtual machine.
To record the executed basic blocks, we enabled a kernel
feature called kcov [18], which was initially introduced by
syzkaller [17].

The syzkaller modifications2 mentioned in Sec. 3 include
disabling 191 system calls that are not related to VFS, e.g.
those for process control, memory operations, or network
operations. Based on an example given by syzkaller, we im-
plemented a library that records the executed kernel basic
blocks during execution of an arbitrary program in 307 lines
of C++ code. Since the library hooks into the program under
test via the LD_PRELOAD mechanism, we collect covered
basic blocks for a complete process hierarchy. We used this
library to gather the results presented in Sec. 3.

Whether one basic block belongs to the VFS subsystem or
not is determined using addr2line3 on the Linux-kernel ELF
image: It converts an address to one or more kernel source-
file names. Due to function inlining, it may return more than
one source file for a single address. If a source file matches
the following regular expression, a basic block is considered
to belong to the VFS subsystem: /fs/|/mm/|fs\.h|mm\.h.
We also include the mm directory and header files contain-
ing mm.h, because the file-I/O code is located there such as
mm/readahead.c or mm/page-writeback.c.

4.2 Results
During its 65-hour run, syzkaller generated 2278 programs
that created a basic-block coverage of 10.0 percent for the
whole kernel and 31.4 percent for the VFS subsystem. More-
over, it covers 9.1 percent of VFS basic blocks that are not
already covered by LTP. Fig. 1 shows the development of these
three basic-block coverage numbers during syzkaller’s run:
The basic-block coverage increases quickly after the start,
and slowly levels off afterwards. The Y axis on the left-hand
side of the plot shows the absolute amount of basic blocks
covered, the Y axis on the right side the percentage of VFS
basic blocks.
The relation between basic blocks belonging to the VFS

subsystem, and those covered by syzkaller’s generated pro-
grams and by LTP’s test suites, is displayed in the area-
equivalent Venn diagram in Fig. 2. The absolute numbers
shown for each area intersection are the absolute number of
basic blocks shared among all intersecting basic-block sets.
To summarize, our results indicate that combining LTP

and syzkaller’s programs to one workload can significantly
improve the overall code coverage for the VFS subsystem by
9.1 percentage points from 34.7 to 43.8 percent.

5 Conclusions
In this article, we showed that using LTP as the only bench-
mark source for LockDoc yields limited kernel-code cov-
erage, as it only covers 35 percent of basic blocks for the
VFS subsystem. We repurposed syzkaller to generate pro-
grams that complement LTP to achieve better coverage, with

2Our modifications are based on git commit
056be1b9c8d0c6942412dea4a4a104978a0a9311.
3https://sourceware.org/binutils/docs/binutils/addr2line.html

https://sourceware.org/binutils/docs/binutils/addr2line.html

0

10000

20000

30000

0.0%

10.0%

20.0%

30.0%

40.0%

0 20 40 60

syzkaller Runtime (hours)

C
ov

er
ed

 L
in

ux
−

K
er

ne
l B

B
s P

ercentage of V
F

S
 B

B
s

Covered basic blocks
total
in VFS subsystem
in VFS, not covered by LTP

Figure 1. Development of the Linux-kernel basic-block cov-
erage for the programs generated by syzkaller. The dotted
line shows the number of covered basic blocks out of all
342,732 kernel BBs; the dashed line shows the fraction of
the 75,531 basic blocks of the VFS subsystem. The solid line
shows the number of VFS basic blocks covered by syzkaller-
generated programs that are not already covered by LTP.

VFS
42446

LTP
14083

syzkaller
6090

9332

6856

6100

16897

Figure 2. Set relations between VFS-subsystem basic blocks,
and basic blocks covered respectively by syzkaller’s gener-
ated programs and by LTP’s test suites.

the future-work goal to improve LockDoc’s precision and
bug-finding effectiveness. We were able to increase the VFS
basic-block coverage by 26.1 percent by combining LTP and
syzkaller.

As our next steps, we plan to optimize the resulting bench-
mark suite in terms of runtime with near-zero coverage loss.
We want to discard tests or programs that do not add new
coverage or incur too much runtime.

References
[1] Daniel Pierre Bovet and Marco Cesati. 2005. Understanding The Linux

Kernel (3rd ed.). O’Reilly Media Inc.

[2] Andrea Claudi and Aldo Franco Dragoni. 2011. Testing Linux-based
real-time systems: Lachesis. In Proceedings of the IEEE International
Conference on Service-Oriented Computing and Applications (SOCA).

[3] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
Shuang Hao, Christopher Kruegel, and Giovanni Vigna. 2017. DIFUZE:
Interface aware fuzzing for kernel drivers. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security. ACM
Press, 2123–2138.

[4] Cyril Hrubis et al. [n. d.]. Linux Test Project. https://github.com/
linux-test-project/ltp. Accessed: 2020-08-20.

[5] Manoj Iyer. 2002. Analysis of Linux Test Project’s kernel code coverage.
http://kernel.poly.ro/2.4/kernel%20docs/kernel_coverage.pdf.

[6] David Jones et al. 2006. Trinity: Linux system call fuzzer. https:
//github.com/kernelslacker/trinity. Accessed: 2020-08-20.

[7] Paul Larson. 2002. Testing Linux with the Linux Test Project. In
Proceedings of the Ottawa Linux Symposium. 265–273.

[8] Paul Larson, Nigel Hinds, Rajan Ravindran, and Hubertus Franke. 2003.
Improving the Linux Test Project with kernel code coverage analysis.
In Proceedings of the Ottawa Linux Symposium. 275–289.

[9] Tin Le. 1991. tsys. https://groups.google.com/g/alt.sources/c/V_
B37EtnWKQ/m/NztsljVYV84J. Accessed: 2020-08-20.

[10] Alexander Lochmann, Horst Schirmeier, Hendrik Borghorst, and Olaf
Spinczyk. 2019. LockDoc: Trace-Based Analysis of Locking in the
Linux Kernel. In Proceedings of the 14th ACM SIGOPS/EuroSys European
Conference on Computer Systems (EuroSys ’19). ACM Press, New York,
NY, USA. https://doi.org/10.1145/3302424.3303948

[11] Robert Love. 2010. Linux Kernel Development (3rd ed.). Addison-Wesley,
Boston, MA, USA.

[12] Glenford J. Myers, Corey Sandler, and Tom Badgett. 2011. The Art of
Software Testing (3rd ed.). Wiley Publishing.

[13] Vegard Nossum and Quentin Casasnovas. 2016. Filesystem fuzzing
with American Fuzzy Lop. In Proceedings of the Linux Storage and
Filesystems Conference (VAULT). USENIX Association.

[14] Rusty Russell. [n. d.]. Kernel Hacking Guides: Unreliable Guide To
Locking. https://www.kernel.org/doc/html/v4.15-rc9/kernel-hacking/
locking.html. Accessed: 2018-01-24.

[15] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebas-
tian Schinzel, and Thorsten Holz. 2017. kAFL: Hardware-
Assisted Feedback Fuzzing for OS Kernels. In Proceedings of the
26th USENIX Security Symposium. USENIX Association, Vancouver,
BC, 167–182. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/schumilo

[16] Heyuan Shi, Runzhe Wang, Ying Fu, Mingzhe Wang, Xiaohai Shi,
Xun Jiao, Houbing Song, Yu Jiang, and Jiaguang Sun. 2019. Indus-
try Practice of Coverage-Guided Enterprise Linux Kernel Fuzzing. In
Proceedings of the 27th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2019). ACM Press, New York, NY, USA, 986–995.
https://doi.org/10.1145/3338906.3340460

[17] Dmitry Vyukov. 2015. Syzkaller: An unsupervised, coverage-guided
kernel fuzzer. https://github.com/google/syzkaller. Accessed: 2020-08-
20.

[18] Dmitry Vyukov. 2016. kcov: code coverage for fuzzing. https://www.
kernel.org/doc/html/latest/dev-tools/kcov.html. Accessed: 2020-08-20.

[19] Hiro Yoshioka. 2007. Regression Test Framework and Kernel Execution
Coverage. In Proceedings of the Linux Symposium. 285–296.

[20] Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software Unit
Test Coverage and Adequacy. ACM Comput. Surv. 29, 4 (Dec. 1997),
366–427. https://doi.org/10.1145/267580.267590

https://github.com/linux-test-project/ltp
https://github.com/linux-test-project/ltp
http://kernel.poly.ro/2.4/kernel%20docs/kernel_coverage.pdf
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://groups.google.com/g/alt.sources/c/V_B37EtnWKQ/m/NztsljVYV84J
https://groups.google.com/g/alt.sources/c/V_B37EtnWKQ/m/NztsljVYV84J
https://doi.org/10.1145/3302424.3303948
https://www.kernel.org/doc/html/v4.15-rc9/kernel-hacking/locking.html
https://www.kernel.org/doc/html/v4.15-rc9/kernel-hacking/locking.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://doi.org/10.1145/3338906.3340460
https://github.com/google/syzkaller
https://www.kernel.org/doc/html/latest/dev-tools/kcov.html
https://www.kernel.org/doc/html/latest/dev-tools/kcov.html
https://doi.org/10.1145/267580.267590

	Abstract
	Introduction
	Related Work
	Approach
	Evaluation
	Setup
	Results

	Conclusions
	References

