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1 Introduction
Hardware-based Trusted Execution Environments (TEEs), like ARM TrustZone [4, 23], RISC-

V Keystone [15] and Sancus [21], have become a focus of interest regarding their protection of

security-sensitive applications running in untrusted environments. Intel Software Guard

Extensions (SGX) [1, 10, 18] is currently the most advanced hardware-based (TEE) technology

and readily available in commodity Intel CPUs since the Skylake architecture. Furthermo-

re, it promises the confidentiality and integrity of sensitive computations and data against

strong adversary models, such as compromised operating systems or malicious cloud pro-

viders. To achieve the promised security guarantees, Intel SGX provides TEEs, so-called

enclaves, that isolates the security-sensitive code and data in special memory regions en-

crypted by a hardware unit, the Memory Encryption Engine (MEE) [12]. Consequently, only

the enclave can access and process its contents.

Some research works have used SGX TEEs to strengthen the weak trust in cloud in-

frastructures by implementing system prototypes that contain a complete library OS and

enable running unmodified legacy applications in trusted enclaves such as Haven [5] and

Graphene-SGX [31]. Others have utilised SGX to secure the computations on the outsour-

ced sensitive data in the cloud like the distributed MapReduce framework VC3 [25]. As of

today, Microsoft provides one of the first TEE in the cloud based on Intel SGX [2].

2 Motivation
Lately, multiple studies have demonstrated several attacks on SGX that break down its of-

fered security guarantees. They mainly took advantage of SGX’s strict threat model and

created numerous return-oriented programming (ROP) [16, 29] and side channel [7, 8, 17]

attacks to exploit memory corruption vulnerabilities inside a SGX enclave and leak its sen-

sitive contents. To mitigate the impact of such attacks, some researchers have implemented
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various defensive mechanisms for SGX enabled applications [11, 13, 22, 28]. For example,

SGX-Shield [26], SGX-Armor [27] and DR.SGX [6] have introduced different Address Space

Layout Randomisation (ASLR) implementations into SGX TEEs. Alternatively, Obfuscuro

[3] is a cryptography-based defence technique, like oblivious RAM mechanisms [24, 30], for

Intel SGX that protects from sensitive data leakage by access pattern-based [9] and timing-

based side channel attacks [7, 19].

Nonetheless, recent research works have presented powerful classes of attacks, like JIT-

ROP [29] and controlled channel attacks [14, 20, 32], that can circumvent the aforementioned

defence techniques by either derandomising the shuffled memory layout or observing en-

clave access patterns without resorting to page faults at runtime. Furthermore, all presen-

ted SGX defence mechanisms either require special compilers or hardware modifications

due to the limitations of SGX or they add a significant runtime overhead to the enclaved

applications.

Very recently, Intel has released the novel SGXv2 extensions that lifted the initial enclave

restrictions regarding its fixed size and the inability to modify the access permissions of its

pages at runtime. As a result, they allowed the development of more flexible and complex

applications, such as an in-enclave JIT-compiler or loading code modules at runtime, as

well as new defence strategies.

3 The Talk’s Content
At start, we briefly present the sgx-dl framework which, to our knowledge, is the first project

built upon the novel SGXv2 instructions. It enables dynamic loading and hot patching

of function code inside an enclave at runtime. Moreover, it does not demand any special

compilers or hardware modifications and only utilises the SGX SDK functionalities and

requires the adoption of a particular programming model.

Subsequently, we present a new security feature for SGX enclaves, namely periodic ASLR,

as an extension of the sgx-dl framework. Different from the traditional ASLR techniques,

it periodically randomises the locations of the dynamically loaded function code and data

inside the enclave at runtime while adapting the shuffling frequency to the application’s

workload between each two consecutive shuffles. Thus, it significantly increases the gene-

rated noise during the previously mentioned strong attacks, such as JIT-ROP, page-fault

and some timing based and cache-based side channel attacks. Furthermore, we illustrate

the design decisions taken to achieve the aforementioned security feature. At the end, we

demonstrate an analysis regarding the security and performance overhead induced by the

periodic ASLR feature.

In conclusion, our approach improves the enclave protection against the modern ROP

and side channel attacks with lower execution overhead costs and minimal necessary efforts

compared to existing defensive mechanisms. The conducted macro-benchmark, STANli-

te’s built-in performance benchmark (Speedtest1), has shown an average runtime overhead of

2.26% per test experiment compared to the native execution without periodic ASLR. Mean-

while, the performance overhead of the micro-benchmarks have shown some fluctuations

between 4% and up to 50% in some cases based on the utilised randomisation technique.
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