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Abstract—Albeit being introduced decades ago, C and C++
are still the most commonly used programming languages for
operating systems. These languages have no reliable mechanisms
to deal with memory safety issues, such as use-after-free or
data race conditions, that are a leading cause for security bugs
in operating systems and other critical software. Tools such
as Valgrind have been developed to identify errors, but the
errors must occur during the analysis, as they are not found
otherwise. Several modern programming languages such as Rust,
Go and Swift have emerged aiming to solve some of the issues
by providing memory safety guarantees at compile or run time.
However, these languages introduce new limitations, especially
concerning software development for performance-critical or
resource-constrained systems. In this paper, we introduce a new
approach to automatic memory management that manages the
lifetime of object groups instead of individual objects. We show
that group-based memory management can remove some of the
restrictions of modern programming languages while satisfying
important memory safety constraints. Furthermore, we show how
group-based memory management is implemented in our new
systems programming language Fyr.

I. INTRODUCTION

System software and software for embedded systems is
still dominantly developed in C/C++ and a large fraction of
programming errors in these languages can be attributed to
incorrect memory management. This is expressed in findings
like the fact that memory safety issues contribute to 70% of
all security bugs in Google Chrome [3]. A reason for this
is the flexibility of pointers in C/C++, which can refer to
arbitrary memory locations, without any built-in mechanisms
enforcing proper allocation and initialization of these memory
regions. The most prominent sources of errors are use after
free, memory leaks and race-conditions. These errors can
either cause crashes, nondeterministic behaviour or drain the
available memory due to a failure to free allocated memory.

Tools like Valgrind can be used to detect such errors.
However, these tools augment the software and are thus
difficult to use for system software or embedded systems,
which are very resource-constrained. Furthermore, tools like
Valgrind can only detect errors that have happened, such as in
test cases. If the test coverage is low, tools like these are of
little help.

The other approach is the use of a memory-safe language.
Here the safety is derived from compile time checking instead
of test time checking. Several modern languages such as Rust,
Swift and Go have been positioned as replacements for C.
However, except for Rust, these languages are not commonly
used for (productive) embedded or operating system develop-

ment. Rust is currently considered to be used inside the Linux
Kernel, is one of the languages that are approved throughout
the Fuchsia OS Platform Source Tree, and is supporting many
embedded targets through the LLVM backend [15, 13, 16].
In a simple benchmark suite comparing different languages
across multiple algorithms, we can observe that Swift achieves
execution times comparable to C in some cases, but has usually
much higher memory consumption [18].

In this paper, we discuss the shortcomings of these lan-
guages when applied to (embedded) system software devel-
opment, and propose a new memory management scheme to
overcome some of these weaknesses. Our approach can be
classified as an extension of the principle memory manage-
ment concept used in Rust.

A major inconvenience in Rust is the strict management of
lifetimes for individual, possibly connected, objects. Objects
in Rust are deallocated at the earliest possible point in time.
If two objects with different lifetimes are added into one data
structure, the lifetime of the entire data structure is bound by
the shortest lifetime of all objects involved.

We propose to manage the lifetime of groups of objects
instead of tracking the lifetime of each individual object.
This approach is less restrictive than the borrow checker
used by Rust and it can potentially reduce the overhead of
memory management. If we have a data structure of objects
with different lifetimes that usually would be deallocated at
different stages, these objects are now in a group as of our
proposal and will be deallocated when the complete group
can be freed.

This highlights another optimization goal besides safety
and efficiency: expressiveness. A language can be memory-
safe and at the same time not allow for data structures such
as graphs. For example, the borrow checker used in Rust is
essentially only able to check tree-like data structures. It is
possible to create graph-like data structures, but the nature
of these structures requires more complex solutions that rely
on run time reference counting and explicitly unsafe code. A
memory-safe replacement for C/C++ should thus cause as little
overhead as possible and at the same time give the developer
the freedom to express his algorithms and data structures
with a minimum of language-imposed constraints and without
sacrificing the safety guarantees.

In this paper, we show how group-based memory man-
agement can provide advances in this direction. Also, we
show how the idea has been implemented in a new systems
programming language called Fyr. A new language is neces-



sary because group-based memory management is not a drop-
in replacement for other memory management techniques.
Instead, it requires special language constructs.

II. MEMORY MANAGEMENT

In this section, we show how important it is to study how
comprehensive the language-based safety guarantees are.

Memory management of programming languages can gen-
erally be divided into manual and automatic memory manage-
ment. However, the lines between both are blurry and there
are various approaches to automatic memory management.

Most system programming languages offer a mix of manual
and automatic memory management. For example, C++ offers
manual memory management, but the use of smart pointers
can give developers the feeling that automatic memory man-
agement is in place because smart pointers control the lifetime
of the objects they point to. However, the compiler does
not enforce that smart pointers are used everywhere, which
means that there are no safety guarantees provided by the
compiler. Furthermore, smart pointers add a small performance
penalty due to reference counting or the passing of ownership.
Additionally, it is always possible to cast smart pointers to raw
pointers and thus invalidate all safeguards provided by these
constructs.

Languages with automatic memory management by default
usually feature a mode to interoperate with C code or to bypass
language restrictions for the sake of maximum performance.
To do this, languages such as Go, Swift, and Rust introduce
the notion of manual memory management or an unsafe mode.

Consequently, it is important to evaluate which parts of
system software can actually benefit from automatic memory
management and which cannot.

A. C Modifications

Solutions that modify C/C++ to achieve memory safety have
exhaustively been researched. Several projects extended C with
a combination of compile-time and run time checks such as
Cyclone [11, 10], CCured [14] or Microsofts CheckedC [19].
Although this paper does not focus on thread safety, it is
worth noting that CheckedC, CCured and Cyclone do not
offer solutions for thread safety. In contrast, Fyr is thread-safe,
because it avoids that one group of objects is concurrently
modified by two threads.

SAFE-C [20] is a C dialect that uses run time checks to
gain memory safety, but this incurs a performance penalty.

Furthermore, several linters have been developed such
as LCLint [8], Metal [7, 6], SLAM [1], PREfix [2], and
CQual [17]. Linters are useful helpers to detect common
pitfalls, but they cannot prove the absence of a certain error
class.

Microsoft VCC [4] (a verifier for concurrent C) is essen-
tially annotated C as well. The annotation used by VCC
can come in the form of pre/postconditions and invariants.
The correctness is then determined using an automated SMT
solver. While VCC is very powerful and was used to verify
Hyper-V, its use requires expertise in constraint languages, and

sometimes the verifier will diverge, which requires a rethinking
of the pre/postconditions. Hence, it is only viable in very
critical pieces of software that are already written in C.

B. Automatic Memory Management

Modern systems programming languages dominantly em-
ploy automatic memory management. The most prominent
mechanism for automatic memory management is garbage
collection, but it is problematic for time-critical system soft-
ware and embedded systems. The performance of garbage
collectors (GC) is constantly improving, as can be seen by
the progress made on the Go GC [12]. However, the timing of
the garbage collection runs is non-deterministic. This may not
be a problem for typical server software but can have notice-
able impacts on interactive applications and high-performance
networking software [5]. The second problem is that garbage
collection requires more RAM as it slows down under memory
pressure due to frequent runs of the garbage collector. On
embedded systems with constrained resources, RAM is often
limited, which means that GC is no suitable approach.

Another mechanism for automatic memory management is
automatic reference counting (ARC) as used by Swift. With
ARC individual objects are subject to reference counting.
The compiler automatically generates code that performs the
required reference counting. While the effect is similar to the
use of smart pointers in C++, ARC guarantees that reference
counting is performed correctly. However, reference counting
can lead to circular references, i.e. objects pointing to each
other in a circle. In such a case use after free errors are
avoided, but memory leaks are still possible. This means
that Swift had to introduce notions of strong and weak
references, to circumvent this problem. Furthermore, multi-
threading requires the use of atomic reference counting, which
can have detrimental effects on performance when multiple
cores perform atomic reference counting on the same cache
line concurrently. Thus, reference counting comes with some
run time overhead.

The memory management used by Rust promises zero over-
heads and focuses on the concept of ownership. In essence,
the compiler ensures that an object can only be owned by one
pointer, which determines the lifetime of the object. As soon
as the variable goes out of scope, the value that is owned by it
is dropped. But ownership alone is too restrictive, as objects
would have to be moved back and forth whenever they are
passed as arguments to a function. Therefore, Rust introduced
the concept of borrowing an object, which is comparable to
pointers in C and references to an object in C++. Borrows
are bound by very specific rules: there can only ever be one
mutable reference or any number of read-only references at
the same time. This way the compiler can track when an object
has been borrowed and when control of the object returns to its
owner. Another rule dictates that a borrow shall never outlive
the owner, thus it can be statically proven that references
always point to live data and that no data races can possibly
exist.



The appealing idea of this approach is that it does not inflict
any run time overhead, because borrowing and passing of
ownership is only analyzed at compile time and no additional
run time actions are required. Hence, the performance of Rust
should potentially reach that of C.

Since Rust’s memory management is built on ownership
and temporary borrowing, only tree-shaped data structures
are allowed. This restriction is required, because borrowing
is bound to program flow, e.g. a scope or a function call.
Borrowed pointers cannot be stored on the heap and outlive
the control flow that caused the borrowing. Even a dynamic
doubly-linked list cannot be easily represented in Rust for this
reason.

One way to bypass this restriction is the use of C++-like
smart pointers, which use unsafe Rust internally. Building a
doubly linked list this way is possible, but in this case Rust
uses reference counting similar to Swift and ensures at run
time that use after free is avoided.

If data structures in Rust contain references to other objects,
they must have a lifetime associated to it, to prohibit invalid
access to references. Graph-like data structures can contain
references to values on the stack or the heap and thus the
complete graph is bound to the shortest lifetime. If we instead
elevate these short-lived objects to match the lifetime of the
rest of the group, we can have memory safety and expressive-
ness.

C. Group-based Memory Management

The automatic memory management mechanisms discussed
previously try to accomplish the same task as manual memory
management, e.g. to free individual objects that are no longer
required.

This does not take into consideration that many data struc-
tures are built incrementally, but are later freed together.
For example, consider an object that represents an HTTP
request on the server. During processing the request object
grows continuously by attaching more objects for URI, user
credentials, tokens, header fields, and response body. When
the request finishes, all the aforementioned objects become
useless and will be freed.

When the previously discussed mechanisms are in place, the
programmer must explicitly tell the compiler that the pointers
connecting these objects are alive, i.e. that they do not point
to memory that has since been freed. This may even require
useless reference counting to ensure the lifetime of said objects
is long enough.

The idea of group-based memory management is to exploit
the fact that groups of objects grow and are released together.
In this case, the compiler (and therefore the programmer) does
not have to worry about pointers between these objects since
they belong to the same group and therefore the objects are
released all at once instead of individually.

To the best of our knowledge, our publication of Fyr
was the first to introduce the notion of group-based memory
management in programming languages [21]. Later, Microsoft

released a new programming language called Verona1. Verona
uses the term region instead of group but the fundamental idea
is similar.

One fundamental difference between Verona and Fyr is the
embedding in the programming language. Verona requires the
programmer to inform the compiler about groups while Fyr
mostly automates the process.

The Verona documentation shows how to allocate two
objects in the same region (or group):

var x = new Node;
var y = new Node in x;

This shows how the Verona programmer indicates explicitly
that y should be allocated in the same group as x.

Fyr uses a more convenient approach to determine which
objects belong to the same group. The compiler infers group-
ings by analyzing program flow.

Listing 1: Infer groupings through program flow

1 var x = new Node
2 var y = new Node
3 x.next = y
4 y.prev = x
5 return x

Using the small section of Fyr code in listing 1 as an
example, the process is as follows: In lines 1 and 2 the
compiler believes that x and y are two pointers to individual
Node objects on the heap, thus each of these belongs to its
own group. In line 3 the compiler sees that the object pointed
to by x now includes a pointer to the object pointed to by y.
This implies that both must belong to the same group, even
though the programmer did not declare this manually.

This analysis happens at compile time. Consequently, the
compiler generates code for lines 1 and 2 with the knowledge
that both objects belong to the same group and thus have
the same lifetime. This allows saving a call to malloc(),
because the compiler can allocate the memory for both objects
in a single call to malloc(). When pointers x and y go
out of scope, the Fyr compiler sees that no pointers to this
group remain on the stack frame and frees the memory. This
illustrates how group-based memory management can lead to
more efficient code by allocating and freeing objects in a group
simultaneously.

In line 4 of the example above, the y-object is set to point
to the x-object, creating circular references. This is not be
allowed in Rust, as ownership cannot be determined since
the objects point towards each other. In contrast to this, Fyr
understands that the x- and y-objects are already in the same
group and they can have arbitrary pointers to each other. This
illustrates that group-based memory management can offer
more freedom to the programmer to shape data structures as
he wishes.

However, not everything can be determined automatically.
Each function in Fyr must declare how its parameters are
grouped. For example in

1https://github.com/microsoft/verona/blob/master/docs/explore.md
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func f(a *Node, b *Node) { }

the function f assures that a and b are pointers and the ob-
jects they point to may belong to different groups. Therefore,
the function must not force them into one group by connecting
the objects in any way. The following lines do therefore cause
a compiler error in line 2:

func f(a *Node, b *Node) {
a.next = b

}

Expanding the function signature fixes this issue:

func f(a ‘g *Node, b ‘g *Node) {
a.next = b

}

The compiler is instructed that arguments to f must be of
the same group by annotating both parameters with the same
group-specifier ‘g. This is the only case in Fyr where the
programmer has to explicitly declare groupings. Everything
else is automatically inferred by the compiler.

When calling this function f, the compiler uses the function
signature to reason about the grouping. In the following
example, the compiler infers that x and y point to objects
in the same group, because the signature of f demands it.

var x = new Node
var y = new Node
f(x, y)

If more complex control flow is used, the group analysis
becomes significantly more challenging. The code in listing 2
shows a case where the control flow cannot be determined
statically.

Listing 2: Static grouping is not always possible

1 var x = new Node
2 var y = new Node
3 if luck() {
4 f(x, y)
5 }
6 return x

In this case, the two objects belong to the same group if and
only if the if-clause is executed. However, this is only known
at run time. Due to this, the compiler allocates the x-object and
the y-object individually on the heap and assumes that they
form two independent groups. If the if-clause is executed, it
merges both groups together during run time. Since releasing
of memory is done per group, after line 6, the y-object will be
freed if and only if the if-clause did not run. While merging
groups at run time, the memory allocation system maintains
a single linear list per group. This incurs a small run time
overhead but simplifies the process of releasing memory.

While a full explanation of Fyr is beyond this paper, we
also want to mention that Fyr supports the concept of foreign
group pointers. These pointers point to objects in other groups
and allow the creation of dynamic data structures that can
grow and shrink dynamically. Foreign group pointers denote
ownership of the other group. In this case, Fyr manages groups
with ownership and borrowing somewhat similar to how Rust

manages individual objects, while still keeping its flexibility
for data structures inside one group.

The language implementation is open-source and still under
development. It can be retrieved from the Fyr Git reposi-
tory [9].

III. FYR COMPILER INTERNALS

The process of detecting these groupings consists of two
distinct steps and is the most complex part of the compiler:
Group analysis is the phase of determining which objects
belong to the same group and group checking ensures that
the program does not try to merge groups that must not be
merged.

Analyzing grouping based on the abstract syntax tree (AST)
of the source code directly is far too complex. Instead,
we first compile the Fyr code into single-static assignment
form (SSA), where each variable is assigned only once. This
simplifies the task of tracking groupings significantly and is a
common step in modern compilers.

In the code shown in listing 2, SSA turns y into a phi-
variable. A phi-variable is assigned only once and its value
depends on the control flow. In Fyr, y is associated with a
phi-grouping. That means the compiler generates a pointer that
tracks at run time to which group y does belong, which allows
for modification of the group at run time. This is required
because — without any analysis of the f function — the actual
group can only be known at run time. This way the compiler
provides an automated framework allowing for safe memory
usage in scenarios where the exact compositions of objects
cannot be determined at compile time.

While this does generally introduce execution overhead
at run time, there is huge potential to eliminate run time
group merges using more extensive compile time analysis. In
Listing 3 no run time costs are inflicted, because the compiler
can determine at compile time that y is not used outside the
if-clause.

Listing 3: No need to merge

1 var x = new Node
2 if luck() {
3 var y = new Node
4 x.next = y
5 }
6 return

If y is ever assigned an object, it belongs to the same group
as x. This also means that the compiler does not need to
generate any code to free the y-object explicitly because it
is freed together with the x-object in line 6 when x goes out
of scope. Since y has already left its scope and x is the only
active object left in the group, the compiler can automatically
free all elements in the group at once.

As a compiler backend, Fyr currently produces C99 code
that is then compiled with gcc or clang. The advantage
of this approach is that we can use the normal tooling to
generate code for embedded use cases. At the time of writing,
Fyr can produce code for Intel x86-64 and Atmega328 (i.e.
Arduino boards). Other build targets should be easy to add



since existing C-compilers can be used and the configuration
backend to integrate them is flexible.

IV. CONCLUSIONS AND OUTLOOK

We have shown that group-based memory management
can improve on current mechanisms for automatic memory
management by checking the lifetime of groups of objects
instead of checking the lifetime of each object individually.
This approach can support a broader range of data structures
without incurring significant run time overhead.

We presented the embedding of our memory management
scheme in the Fyr programming language. As the implemen-
tation of Fyr matures, usage of the language will provide feed-
back on the suitability of group-based memory management
in real-world system software. Furthermore, we will try to
leverage more of the performance optimizations that become
possible with group-based memory management.

With respect to backends, an LLVM backend is a desirable
next step to improve the speed of compilation. Work on an
experimental Vulkan backend has already started.

Group-based memory management could be utilized to
address further systems programming challenges. For exam-
ple, our approach could be used to target non-homogeneous
memory architectures by attaching groups to different memory
types such as RAM, Flash, or shared memory region.
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