Refreshing Memories
Non-Volatility in Volatile Address Spaces

oo 4

{;] Leibniz
{ 0; Z Universitat
Hannover

Stefan Naumann, Daniel Lohmann
24 September 2020

® NVRAM and its Use Cases H

m Byte-adressable, low latency, less energy consuming, persistent
m Commercially available

m large and expected to be very cheap

- : N

@D :.: =1
Persistence with Huge DRAM Huge Persistent
File Systems Best-Effort Cache

Stefan Naumann Non-Volatility in Volatile Address Spaces 2-13

M Programming with NVRAM: PMDK

Stefan Naumann Non-Volatility in Volatile Address Spaces 3-13

M Programming with NVRAM: PMDK

NVDIMM-Driver

Stefan Naumann Non-Volatility in Volatile Address Spaces 3-13

M Programming with NVRAM: PMDK

DAX
File Systems

T— NVDIMM-Driver

Stefan Naumann Non-Volatility in Volatile Address Spaces 3-13

M Programming with NVRAM: PMDK

DAX DAX-Dri
File Systems TOrIver

T— NVDIMM-Driver —T

Stefan Naumann Non-Volatility in Volatile Address Spaces 3-13

M Programming with NVRAM: PMDK

File Systems DAX-Driver

T— NVDIMM-Driver —T

Stefan Naumann Non-Volatility in Volatile Address Spaces 3-13

M Programming with NVRAM: PMDK

Application Code Persistent Memory Development Kit
T (PMDK):
PMDK m Object pool management,
T including memory allocators
| > mmap |
DAX .
DAX-Driver

File Systems

T— NVDIMM-Driver —T

Stefan Naumann Non-Volatility in Volatile Address Spaces 3-13

M Programming with NVRAM: PMDK

Application Code

File Systems DAX-Driver

T— NVDIMM-Driver —T

Stefan Naumann Non-Volatility in Volatile Address Spaces

Persistent Memory Development Kit
(PMDK):

m Object pool management,
including memory allocators

m Crash consistency by transactions

s Programming with NVRAM: PMDK

ii || Leibniz
1 0j 2] Universitit
1094 || Hannover

Application Code

File Systems DAX-Driver

T— NVDIMM-Driver —T

Stefan Naumann Non-Volatility in Volatile Address Spaces

Persistent Memory Development Kit

(PMDK):

m Object pool management,
including memory allocators

m Crash consistency by transactions

m Bindings to several languages

- Programming with NVRAM: PMDK

Application Code Persistent Memory Development Kit
T (PMDK):
PMDK m Object pool management,
T including memory allocators
| > mmap m Crash consistency by transactions
DAX | _ m Bindings to several languages
File Systems LBV E DI m Cons:
T_ NVDIMM-Driver _T = Uses an own pointer format
.............................. T = Reimplements libc-calls for its own
pointers
NVRAM

= SLOC: 126k & 115k C++ bindings

Stefan Naumann Non-Volatility in Volatile Address Spaces

qm Linked List on DRAM, pure NVRAM and PMDK

Timesins

Stefan Naumann

25

20

—e— DRAM
NVRAM
PMDK

30 40
#Entries in Mio

Non-Volatility in Volatile Address Spaces

50

60

70

M Linked List on DRAM, pure NVRAM and PMDK

X 2.6

25 T
—eo— DRAM
—=— NVRAM
20 | PMDK i
L 15f |
£
4]
£
T of i
5
|

0 10 20 30 40 50 60
#Entries in Mio

Stefan Naumann Non-Volatility in Volatile Address Spaces

70

M Linked List on DRAM, pure NVRAM and PMDK

Timesins

Stefan Naumann

25

X 2.6

0 10 20 30 40
#Entries in Mio

Non-Volatility in Volatile Address Spaces

50

60

70

SE

Leibniz

®9 Problems in PMDK e

i

Pointer := (Pool-UUID, Offset)

Problems:
1. Fat-Pointer dereference incurs hefty indirection overhead

Stefan Naumann Non-Volatility in Volatile Address Spaces 5-13

ii || Leibniz
1 0j 2] Universitit
1094 || Hannover

i

Pointer := (Pool-UUID, Offset)

Problems:
1. Fat-Pointer dereference incurs hefty indirection overhead

o
[
%)

Stefan Naumann Non-Volatility in Volatile Address Spaces

ii || Leibniz
1 0j 2] Universitit
1094 || Hannover

0x00 45

-

Pointer := (Pool-UUID, Offset)

Problems:
1. Fat-Pointer dereference incurs hefty indirection overhead

o
[
%)

Stefan Naumann Non-Volatility in Volatile Address Spaces

ii || Leibniz
1 0j 2] Universitit
1094 || Hannover

0x00 45

T +0ffset

Pointer := (Pool-UUID, Offset)

Problems:
1. Fat-Pointer dereference incurs hefty indirection overhead

o
[
%)

Stefan Naumann Non-Volatility in Volatile Address Spaces

® Problems in PMDK

0x00 45

T +Oﬁ‘set

Pointer := (Pool-UUID, Offset)

Problems:
1. Fat-Pointer dereference incurs hefty indirection overhead

2. Transactions and crash consistency

o
[
%)

Stefan Naumann Non-Volatility in Volatile Address Spaces

/ Leibniz
102 Universi
1094 || Hannover

Our Approach

Stefan Naumann Non-Volatility in Volatile Address Spaces 6-13

(it] Leibniz
1 0j 2] Universitit
1094 || Hannover

Our Approach

m Reduce indirections and overheads

= Persist location as well as value
= Don't inflate pointers

Stefan Naumann Non-Volatility in Volatile Address Spaces 6-13

T:

M \Volatile Address Spaces

0x00 45

Stefan Naumann Non-Volatility in Volatile Address Spaces 7-13

T:

M \Volatile Address Spaces

0x00 45

A

Stefan Naumann Non-Volatility in Volatile Address Spaces 7-13

Stefan Naumann Non-Volatility in Volatile Address Spaces =13

Non-Volatile Address Spaces

0x00 45

Stefan Naumann Non-Volatility in Volatile Address Spaces 8-13

Process 2 Process 1

Process 3

A Non-Volatile Address Spaces

m Block an area of virtual memory for mapping NVRAM in every process

0x00 Non-Volatile Area 45

Stefan Naumann Non-Volatility in Volatile Address Spaces 8-13

Process 2 Process 1

Process 3

| Non-Volatile Address Spaces

m Block an area of virtual memory for mapping NVRAM in every process
B mmap maps the device to the same address every time

OXOO Non-Volatile Area

Stefan Naumann Non-Volatility in Volatile Address Spaces 8-13

Process 2 Process 1

Process 3

| Non-Volatile Address Spaces

m Block an area of virtual memory for mapping NVRAM in every process
B mmap maps the device to the same address every time

OXOO Non-Volatile Area

Stefan Naumann Non-Volatility in Volatile Address Spaces 8-13

Process 2 Process 1

Process 3

| Non-Volatile Address Spaces

m Block an area of virtual memory for mapping NVRAM in every process
B mmap maps the device to the same address every time

OXOO Non-Volatile Area

Stefan Naumann Non-Volatility in Volatile Address Spaces 8-13

Process 2 Process 1

Process 3

| Non-Volatile Address Spaces

m Block an area of virtual memory for mapping NVRAM in every process
B mmap maps the device to the same address every time

OXOO Non-Volatile Area

T
1A
AT AR AR

Stefan Naumann Non-Volatility in Volatile Address Spaces 8-13

Process 2 Process 1

Process 3

M Worst-Case: sizeof(Non-Volatile Area)

Assumptions
m New NVRAM namespaces are mapped first-fit inside our Non-Volatile area
m Page-granularity map and unmap-operations
m Discontinuous physical chunks are mapped continuously

Non-Volatile Area

8 free pages

needed space =0

Stefan Naumann Non-Volatility in Volatile Address Spaces 9-13

M Worst-Case: sizeof(Non-Volatile Area)

Assumptions
m New NVRAM namespaces are mapped first-fit inside our Non-Volatile area
m Page-granularity map and unmap-operations
m Discontinuous physical chunks are mapped continuously

Non-Volatile Area

7 free pages

needed space = 1

Stefan Naumann Non-Volatility in Volatile Address Spaces 9-13

M Worst-Case: sizeof(Non-Volatile Area)

Assumptions
m New NVRAM namespaces are mapped first-fit inside our Non-Volatile area
m Page-granularity map and unmap-operations
m Discontinuous physical chunks are mapped continuously

Non-Volatile Area

0 free pages

needed space = 8

Stefan Naumann Non-Volatility in Volatile Address Spaces 9-13

M Worst-Case: sizeof(Non-Volatile Area)

Assumptions
m New NVRAM namespaces are mapped first-fit inside our Non-Volatile area
m Page-granularity map and unmap-operations
m Discontinuous physical chunks are mapped continuously

Non-Volatile Area

6 free pages

needed space = 4 + 2

Stefan Naumann Non-Volatility in Volatile Address Spaces 9-13

M Worst-Case: sizeof(Non-Volatile Area)

Assumptions
m New NVRAM namespaces are mapped first-fit inside our Non-Volatile area
m Page-granularity map and unmap-operations
m Discontinuous physical chunks are mapped continuously

Non-Volatile Area

0 free pages

needed space =4 +2+46

Stefan Naumann Non-Volatility in Volatile Address Spaces 9-13

M Worst-Case: sizeof(Non-Volatile Area)

Assumptions
m New NVRAM namespaces are mapped first-fit inside our Non-Volatile area
m Page-granularity map and unmap-operations
m Discontinuous physical chunks are mapped continuously

Non-Volatile Area

5 free pages

needed space =2 x 4 43

Stefan Naumann Non-Volatility in Volatile Address Spaces 9-13

M Worst-Case: sizeof(Non-Volatile Area)

Assumptions
m New NVRAM namespaces are mapped first-fit inside our Non-Volatile area
m Page-granularity map and unmap-operations
m Discontinuous physical chunks are mapped continuously

Non-Volatile Area

0 free pages

needed space =2 x 4+3+5

Stefan Naumann Non-Volatility in Volatile Address Spaces 9-13

M Worst-Case: sizeof(Non-Volatile Area)

Assumptions
m New NVRAM namespaces are mapped first-fit inside our Non-Volatile area
m Page-granularity map and unmap-operations
m Discontinuous physical chunks are mapped continuously

Non-Volatile Area

4 free pages

needed space = 3 X 4 4 4

Stefan Naumann Non-Volatility in Volatile Address Spaces 9-13

M Worst-Case: sizeof(Non-Volatile Area)

Assumptions
m New NVRAM namespaces are mapped first-fit inside our Non-Volatile area
m Page-granularity map and unmap-operations
m Discontinuous physical chunks are mapped continuously

Non-Volatile Area

0 free pages

needed space = 3 X 4 4 4

Stefan Naumann Non-Volatility in Volatile Address Spaces 9-13

M Worst-Case: sizeof(Non-Volatile Area)

Assumptions
m New NVRAM namespaces are mapped first-fit inside our Non-Volatile area
m Page-granularity map and unmap-operations
m Discontinuous physical chunks are mapped continuously

Non-Volatile Area

0 free pages

E f 7

n
needed space = 7

Stefan Naumann Non-Volatility in Volatile Address Spaces 9-13

M Worst-Case: sizeof(Non-Volatile Area)

Assumptions
m New NVRAM namespaces are mapped first-fit inside our Non-Volatile area
m Page-granularity map and unmap-operations
m Discontinuous physical chunks are mapped continuously

Non-Volatile Area

0 free pages

2 2 2

needed space = g
4KiB pages: 25¢ addresses 4 MiB pages: 2°6 addresses

Stefan Naumann Non-Volatility in Volatile Address Spaces 9-13

M Worst-Case: sizeof(Non-Volatile Area)

Assumptions
m New NVRAM namespaces are mapped first-fit inside our Non-Volatile area

N . .
o Dieeons . .

Non-Volatile Area

n n n ce 0 free pages

2 2 2

needed space = g .
4KiB pages: 2% addresses

Stefan Naumann Non-Volatility in Volatile Address Spaces

Leibniz

¥ Our Interfaces o

m Persistent locations of objects in NVRAM
Allows using normal pointers and brings compatibility with existing libraries

m Memory allocations with a modified musl malloc
Allocate a persistent heap

m Management of root-pointers
Store and find root-objects, used for referencing all other objects in NVRAM

Stefan Naumann Non-Volatility in Volatile Address Spaces 10-13

M Case Study: XML-Parsing Done Once

m Modified libxmlI2 using a peristent heap

m Parse the XML document to DOM-representation ("cached"” for later use)

Stefan Naumann Non-Volatility in Volatile Address Spaces 1-13

M Case Study: XML-Parsing Done Once o] e

m Modified libxmlI2 using a peristent heap

m Parse the XML document to DOM-representation ("cached"” for later use)
m First experiments:

m First call: Parse a 1.5 MB RSS file into DOM-representation

= Traverse the DOM and output HTML-list

= Second call: Use the cached DOM-tree

Stefan Naumann Non-Volatility in Volatile Address Spaces 1-13

iSE

A Case Study: XML-Parsing Done Once

S|

m Modified libxmlI2 using a peristent heap

m Parse the XML document to DOM-representation ("cached"” for later use)
m First experiments:

First call: Parse a 1.5 MB RSS file into DOM-representation

Traverse the DOM and output HTML-list

Second call: Use the cached DOM-tree
Preliminary results show:

— DRAM-Operation takes factor 4x longer than parsing once, then using the cache
— With NVRAM-parsing takes double the time of using the cached DOM

Stefan Naumann Non-Volatility in Volatile Address Spaces 1-13

M Case Study: XML-Parsing Done Once

m Modified libxmlI2 using a peristent heap

m Parse the XML document to DOM-representation ("cached"” for later use)
m First experiments:

First call: Parse a 1.5 MB RSS file into DOM-representation
Traverse the DOM and output HTML-list
Second call: Use the cached DOM-tree

|
|
|
= Preliminary results show:

— DRAM-Operation takes factor 4x longer than parsing once, then using the cache
— With NVRAM-parsing takes double the time of using the cached DOM

m Best-Effort Consistency is good enough - if it crashes, parse the original XM

Stefan Naumann Non-Volatility in Volatile Address Spaces 1-13

M Case Study: Key-Value Store PMEMKV

m Based on Concurrent Hash Map from Intels Threading Building Blocks
m PMDK failed with Out-Of-Memory with 11 GB NVRAM at 39 Mio Entries

Get 10% of keys
10

—»— PMDK
—» NVRAM
(our approach)

_ 8l —¢ DRAM
=

<

o

[a]

X

2 6

£

f=

3

4

°

@

S g

©

13

S

z

2_ M
0 1 2 3 4 5 6

Keys in pmemkv Database in 10 Mio

Stefan Naumann Non-Volatility in Volatile Address Spaces 12-13

== . £ (] Leibniz
S Conclusion 13 e

m PMDK tries to solve everything
= Performance overheads
= Memory Overheads

a9 - S
Persistence with Huge DRAM Huge Persistent
File Systems Best-Effort Cache

Stefan Naumann Non-Volatility in Volatile Address Spaces 13-13

k . £ (] Leibniz
S Conclusion 13 e

m PMDK tries to solve everything
= Performance overheads
= Memory Overheads

m We modified Linux to make the location of NVRAM-objects persistent
= Allows usage of native pointers
= Adds compatibility for existing libraries

: 3
=0 e I =9
Persistence with Huge DRAM Huge Persistent
File Systems Best-Effort Cache

Stefan Naumann Non-Volatility in Volatile Address Spaces

== . £ (] Leibniz
S Conclusion 13 e

m PMDK tries to solve everything
= Performance overheads
= Memory Overheads
m We modified Linux to make the location of NVRAM-objects persistent
= Allows usage of native pointers
= Adds compatibility for existing libraries

m No crash consistency — future work

a0 e V) 29

Persistence with Huge DRAM Huge Persistent
File Systems Best-Effort Cache

Stefan Naumann Non-Volatility in Volatile Address Spaces 13-13

== . £ (] Leibniz
S Conclusion 13 e

m PMDK tries to solve everything
= Performance overheads
= Memory Overheads
m We modified Linux to make the location of NVRAM-objects persistent
= Allows usage of native pointers
= Adds compatibility for existing libraries

m No crash consistency — future work

N M \\
a0 e V) 39
Persistence with Huge DRAM Huge Persistent
File Systems Best-Effort Cache

Stefan Naumann

Email: naumann@sra.uni-hannover.de

Stefan Naumann Non-Volatility in Volatile Address Spaces 13-13

i [Leibniz
2| Univers
4] Hannover

| PMEMKV: Put i

Put keys

94 —— PMDK
—»— NVRAM

8 —%— DRAM

Normalized Runtime [x DRAM]
w

0 1 2 3 4 5 6
Keys in pmemkv Database le7

Stefan Naumann Non-Volatility in Volatile Address Spaces 15-13

{1 Leibniz
| PMEMKV: Delete N e
Delete 10% of keys
—»— PMDK
20 —»— NVRAM
—>%— DRAM
s
<
g
x 15 1
[}
£
=1
c
&
5 104
[
N
©
£
o
Z g
0 T T T T T T T
0 1 2 3 4 5 6
Keys in pmemkv Database le7

Stefan Naumann Non-Volatility in Volatile Address Spaces 16-13

M Lifecycle of NVRAM device

m Create Namespace - destination
pointer from user to driver

Stefan Naumann Non-Volatility in Volatile Address Spaces 17-13

M Lifecycle of NVRAM device

m Create Namespace - destination
pointer from user to driver

m mmap the device into user space

Stefan Naumann Non-Volatility in Volatile Address Spaces 17-13

M Lifecycle of NVRAM device

m Create Namespace - destination
pointer from user to driver

m mmap the device into user space

m munmap the device

Stefan Naumann Non-Volatility in Volatile Address Spaces 17-13

M Lifecycle of NVRAM device ot B

m Create Namespace - destination
pointer from user to driver

m mmap the device into user space
® munmap the device

m Destroy Namespace
free partition for later re-use

Stefan Naumann Non-Volatility in Volatile Address Spaces 17-13

	Motivation

