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NVRAM and its Use Cases

Byte-adressable, low latency, less energy consuming, persistent

Commercially available

Large and expected to be very cheap

HDD
Persistence with
File Systems

MICROCHIP
Huge DRAM

Stack-overflow
Huge Persistent
Best-Effort Cache
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Programming with NVRAM: PMDK

NVRAM

NVDIMM-Driver

DAX-Driver
DAX

File Systems

mmap
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Application Code
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Programming with NVRAM: PMDK

NVRAM

NVDIMM-Driver

DAX-Driver
DAX

File Systems

mmap

PMDKPMDKPMDKPMDK

Application Code Persistent Memory Development Kit
(PMDK):

Object pool management,
including memory allocators

Crash consistency by transactions

Bindings to several languages

Cons:
Uses an own pointer format
Reimplements libc-calls for its own
pointers
SLOC: 126k & 115k C++ bindings
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Linked List on DRAM, pure NVRAM and PMDK
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Problems in PMDK

0x00 45persistent

Pointer := ( Pool-UUID, Offset )

�

+Offset

Problems:

1. Fat-Pointer dereference incurs hefty indirection overhead

2. Transactions and crash consistency
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Our Approach

Reduce indirections and overheads
Persist location as well as value
Don’t inflate pointers
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Volatile Address Spaces

0x00 45persistent

0x00 45persistent
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Non-Volatile Address Spaces

Block an area of virtual memory for mapping NVRAM in every process
mmap maps the device to the same address every time
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Worst-Case: sizeof(Non-Volatile Area)

Assumptions

New NVRAM namespaces are mapped first-fit inside our Non-Volatile area

Page-granularity map and unmap-operations

Discontinuous physical chunks are mapped continuously

Non-Volatile Area

4 4 4n
2

n
2

n
2

. . . 8 free pages7 free pages0 free pages6 free pages0 free pages5 free pages0 free pages4 free pages0 free pages0 free pages0 free pages

needed space = 0
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Our Interfaces

Persistent locations of objects in NVRAM
Allows using normal pointers and brings compatibility with existing libraries

Memory allocations with a modified musl malloc
Allocate a persistent heap

Management of root-pointers
Store and find root-objects, used for referencing all other objects in NVRAM
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Case Study: XML-Parsing Done Once

Modified libxml2 using a peristent heap

Parse the XML document to DOM-representation (“cached” for later use)

First experiments:
First call: Parse a 1.5 MB RSS file into DOM-representation
Traverse the DOM and output HTML-list
Second call: Use the cached DOM-tree

Preliminary results show:
DRAM-Operation takes factor 4× longer than parsing once, then using the cache
With NVRAM-parsing takes double the time of using the cached DOM

Best-Effort Consistency is good enough – if it crashes, parse the original XM
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Case Study: Key-Value Store PMEMKV

Based on Concurrent Hash Map from Intels Threading Building Blocks
PMDK failed with Out-Of-Memory with 11 GB NVRAM at 39Mio Entries
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Conclusion

PMDK tries to solve everything
Performance overheads
Memory Overheads

We modified Linux to make the location of NVRAM-objects persistent
Allows usage of native pointers
Adds compatibility for existing libraries

No crash consistency→ future work

HDDCheck-Circle
Persistence with
File Systems

MICROCHIPExclamation-circle
Huge DRAM

Stack-overflowExclamation-circle
Huge Persistent
Best-Effort Cache
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PMEMKV: Put

0 1 2 3 4 5 6
Keys in pmemkv Database 1e7

1

2

3

4

5

6

7

8

9

No
rm

al
ize

d 
Ru

nt
im

e 
[x

 D
RA

M
]

Put keys
PMDK
NVRAM
DRAM

Stefan Naumann Non-Volatility in Volatile Address Spaces 15 – 13



PMEMKV: Delete
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Lifecycle of NVRAM device

NVRAM

NVDIMM-Driver

DAX-Driver Kernel:
mm_struct

mmapsysfs munmap

Application
Code

ndctl Create Namespace - destination
pointer from user to driver

mmap the device into user space

munmap the device

Destroy Namespace
free partition for later re-use
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