
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) - OPERATING SYSTEMS GROUP

Remote AVX Overhead: Detection and Mitigation

Mathias Gottschlag | March 12, 2021

KIT – The Research University in the Helmholtz Association www.kit.edu

http://www.kit.edu


Impact of AVX2/AVX-512

AVX2/AVX-512: SIMD instructions for data parallelism

256-bit (AVX2), 512-bit (AVX-512)

AVX-512: 2.2x speedup for machine learning
Complex, high power dissipation
CPU cores reduce their frequency
10%-30% slowdown for applications executed in parallel

Similar effects in other workloads

a0

a1

a2

a3

b0

b1

b2

b3

c0

c1

c2

c3

+ =

Remote AVX overhead: AVX2/AVX-512 slows other code down

Today: OS should manage hardware-controlled frequency scaling!

Aubrey Li: Core scheduling: Fixing when fast instructions go slow. LPC’19, Sep. 2019

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 2a/22



Impact of AVX2/AVX-512

AVX2/AVX-512: SIMD instructions for data parallelism

256-bit (AVX2), 512-bit (AVX-512)

AVX-512: 2.2x speedup for machine learning
Complex, high power dissipation
CPU cores reduce their frequency
10%-30% slowdown for applications executed in parallel

Similar effects in other workloads

a0

a1

a2

a3

b0

b1

b2

b3

c0

c1

c2

c3

+ =

Remote AVX overhead: AVX2/AVX-512 slows other code down

Today: OS should manage hardware-controlled frequency scaling!

Aubrey Li: Core scheduling: Fixing when fast instructions go slow. LPC’19, Sep. 2019

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 2b/22



Impact of AVX2/AVX-512

AVX2/AVX-512: SIMD instructions for data parallelism

256-bit (AVX2), 512-bit (AVX-512)

AVX-512: 2.2x speedup for machine learning
Complex, high power dissipation
CPU cores reduce their frequency
10%-30% slowdown for applications executed in parallel

Similar effects in other workloads

a0

a1

a2

a3

b0

b1

b2

b3

c0

c1

c2

c3

+ =

Remote AVX overhead: AVX2/AVX-512 slows other code down

Today: OS should manage hardware-controlled frequency scaling!

Aubrey Li: Core scheduling: Fixing when fast instructions go slow. LPC’19, Sep. 2019

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 2/22



Power-Limited Computing

Modern CPUs: Limited by power dissipation

Thermal headroom = wasted performance

Usually: Select frequency close to power limits

TDP

C0 C1

Po
w

er

⇔

TDP

Po
w

er

C0 C1

Traditional techniques:
Turbo Boost: Higher frequency when some cores idle
Computational sprinting: Higher frequency when heatsink is cold

Per-core power limits

Intructions differ in their power dissipation
“Simple” code has more thermal headroom
⇒ Increase frequency!

C0 C1

Fr
eq

.

max. Pcore

Po
w

er

⇒

C0 C1

Fr
eq

.

max. Pcore

Po
w

er

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 3a/22



Power-Limited Computing

Modern CPUs: Limited by power dissipation

Thermal headroom = wasted performance

Usually: Select frequency close to power limits

TDP

C0 C1

Po
w

er

⇔

TDP

Po
w

er

C0 C1

Traditional techniques:
Turbo Boost: Higher frequency when some cores idle
Computational sprinting: Higher frequency when heatsink is cold

Per-core power limits

Intructions differ in their power dissipation
“Simple” code has more thermal headroom
⇒ Increase frequency!

C0 C1

Fr
eq

.

max. Pcore

Po
w

er

⇒

C0 C1

Fr
eq

.

max. Pcore

Po
w

er

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 3b/22



Power-Limited Computing

Modern CPUs: Limited by power dissipation

Thermal headroom = wasted performance

Usually: Select frequency close to power limits

TDP

C0 C1

Po
w

er

⇔

TDP

Po
w

er

C0 C1

Traditional techniques:
Turbo Boost: Higher frequency when some cores idle
Computational sprinting: Higher frequency when heatsink is cold

Per-core power limits

Intructions differ in their power dissipation
“Simple” code has more thermal headroom
⇒ Increase frequency!

C0 C1

Fr
eq

.

max. Pcore

Po
w

er

⇒

C0 C1

Fr
eq

.

max. Pcore

Po
w

er

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 3/22



Power-Limited Computing

Intel CPUs:
Low frequency for AVX-512 code
Intermediate frequency for AVX2
High frequency for non-AVX code

⇒ All code fully utilizes available power

Optimization to speed up “simple” code (+30%) fmin,AVX−512

fmin,AVX2

fmin,Non−AVX

fmax,AVX−512

fmax,AVX2

fmax,Non−AVX

Instr.

N
on

-A
V

X

AV
X

2

AV
X

-5
12

Future CPUs will remain power-limited

⇒ Following effects increasingly visible on other CPUs

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 4a/22



Power-Limited Computing

Intel CPUs:
Low frequency for AVX-512 code
Intermediate frequency for AVX2
High frequency for non-AVX code

⇒ All code fully utilizes available power

Optimization to speed up “simple” code (+30%) fmin,AVX−512

fmin,AVX2

fmin,Non−AVX

fmax,AVX−512

fmax,AVX2

fmax,Non−AVX

Instr.

N
on

-A
V

X

AV
X

2

AV
X

-5
12

Future CPUs will remain power-limited

⇒ Following effects increasingly visible on other CPUs

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 4/22



Remote AVX Overhead

Frequency reduction affects other code

overhead

time

Freq.

Code AVX-512 Non-AVX

overhead

time

Freq.

Thread AVX-512
Thread Non-AVX

same core

Example:
AVX-512-enabled OpenSSL + nginx
10% slowdown

Example:
Tasks executed in parallel to AVX-512 ML task
Tasks executed in parallel to AVX-512 video
encoder
10%-30% slowdown

Local speedup, remote slowdown

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 5a/22



Remote AVX Overhead

Frequency reduction affects other code

overhead

time

Freq.

Code AVX-512 Non-AVX

overhead

time

Freq.

Thread AVX-512
Thread Non-AVX

same core

Example:
AVX-512-enabled OpenSSL + nginx
10% slowdown

Example:
Tasks executed in parallel to AVX-512 ML task
Tasks executed in parallel to AVX-512 video
encoder
10%-30% slowdown

Local speedup, remote slowdown

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 5/22



Remote AVX Overhead

Example: Typical system with fair scheduler

non-AVX

task

AVX-512

task

CPU time

non-AVX

task

AVX-512

task

Throughput

remote AVX overhead

Overall system performance reduced

Unfair: Some tasks receive less performance

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 6/22



Why not just disable AVX2/AVX-512?

Local decision, global impact
Sometimes positive, sometimes negative

Caused by interaction at runtime
Hard to predict during software development
No information about other tasks at runtime

Proper location to solve these problems is in the OS

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 7/22



Toolbox for AVX Frequency Management

Various techniques to mitigate remote AVX overhead

Profiling

How much? Why?

Core Specialization

Reduce overhead

Fair Scheduling

Limit impact

Hardware Changes

Interfaces, policies

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 8/22



Profiling

Question: Is there substantial remote AVX overhead?

Problem: Differentiation from local AVX overhead
Local: AVX2/AVX-512 code is affected
Remote: Code can execute at higher frequency

Approach: Periodic sampling

time

Frequency

Code AVX-512 non-AVXPause

f1 f2

Calculate overhead from f1/f2 (error only 1.2 percentage points)

Gottschlag et al.: AVX Overhead Profiling: How Much Does Your Fast Code Slow You Down? APSys’20, Aug. 2020

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 9/22



Core Specialization

Early work presented at the fall meeting 2018
Observation: Problems caused by co-scheduling
Idea: Restrict co-scheduling of AVX-512 and other code

“non-AVX core” (fast) “AVX-512 core” (slow)

non-AVX task

non-AVX task

AVX-512 task

AVX-512 task

AVX-512 register
access (trap)

syscall/timeout

Only AVX-512 cores execute AVX-512
Rarely any non-AVX-512 tasks on AVX-512 cores

⇒ Impact on non-AVX-512 code reduced by 70%

Gottschlag et al.: Automatic Core Specialization for AVX-512 Applications. SYSTOR’20, Oct. 2020

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 10/22



Fair Scheduling

Sometimes, remote AVX overhead cannot be mitigated
Need to prevent idle cores, no precise detection of “problematic” instructions

At least restrict impact on other threads

Existing schedulers: Fair allocation of CPU time

non-AVX

task

AVX-512

task

CPU time

non-AVX

task

AVX-512

task

Throughput

remote AVX overhead

CPU time not a suitable metric for throughput!

Gottschlag et al.: Fair Scheduling for AVX2 and AVX-512 Workloads. Submitted.

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 11/22



Fair Scheduling

Scale CPU time according to remote AVX overhead

How much?

a) Fairness

non-AVX

task

AVX-512

task

CPU time

non-AVX

task

AVX-512

task

Throughput

b) Performance Isolation

non-AVX

task

AVX-512

task

CPU time

non-AVX

task

AVX-512

task

Throughput

Prototype based on custom scheduler

⇒ Performance impact reduced by 70%

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 12/22



Toolbox for AVX Frequency Management

Profiling

How much? Why?

Core Specialization

-70% overhead

Fair Scheduling

-70% impact

Hardware Changes

Interfaces, policies

OS should manage hardware-controlled DVFS!

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 13/22



Future Hardware

Prototypes suffer from lack of information, overhead
Sensible improvements for future CPUs?

Current Hardware Improvement

Information on current frequency Information about required frequency
⇒ easier accounting

Cannot detect/prevent energy- Exception before reducing the frequency
intensive instructions ⇒ better scheduling

Delay before restoring frequency Allow OS to increase frequency
⇒ better DVFS policies

Empower the OS

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 14a/22



Future Hardware

Prototypes suffer from lack of information, overhead
Sensible improvements for future CPUs?

Current Hardware Improvement

Information on current frequency Information about required frequency
⇒ easier accounting

Cannot detect/prevent energy- Exception before reducing the frequency
intensive instructions ⇒ better scheduling

Delay before restoring frequency Allow OS to increase frequency
⇒ better DVFS policies

Empower the OS

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 14b/22



Future Hardware

Prototypes suffer from lack of information, overhead
Sensible improvements for future CPUs?

Current Hardware Improvement

Information on current frequency Information about required frequency
⇒ easier accounting

Cannot detect/prevent energy- Exception before reducing the frequency
intensive instructions ⇒ better scheduling

Delay before restoring frequency Allow OS to increase frequency
⇒ better DVFS policies

Empower the OS

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 14/22



Conclusion

AVX2/AVX-512 frequencies affect other (e.g., non-AVX) code

Fundamental problem of power-limited computing

This work:
Tools to measure and mitigate remote AVX overhead
Impact often reduced by more than 70%

Hardware changes can improve efficacy

OS should manage hardware-controlled DVFS!

M. Gottschlag – Remote AVX Overhead: Detection and Mitigation 15/15


	Appendix

