
MxKernel
A System Software Architecture

for Modern Hardware

mxkernel.org

Jan Mühlig
Jens Teubner

Databases and Information Systems

Michael Müller
Olaf Spinczyk

Embedded Software Systems

http://mxkernel.org/

12/03/2021 Olaf Spinczyk: MxKernel 2©
 O

la
f S

pi
nc

zy
k

Traditional Operating Systems
… in the context of modern multicore and manycore systems

Single CPU
User/supervisor mode

Uniform physical memory
MMU: Virtual memory
Global I/O controllers

Hardware

Many CPU cores
Heterogeneous cores

Complex NUMA architecture
Non-volatile memory

Non-uniform I/O architecture
Voltage/frequency islands

Aging effects

Past

Future

CPU MultiplexingCPU Multiplexing
Monolithic architectureMonolithic architecture

Huge virtual address spacesHuge virtual address spaces
Lock-based synchronizationLock-based synchronization

??

OS Support

Image sources (aspect ratios slightly modified):
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Supercomputer

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Supercomputer

12/03/2021 Olaf Spinczyk: MxKernel 3©
 O

la
f S

pi
nc

zy
k

Traditional Operating Systems
● Example: Linux memory allocation benchmark [1]

12/03/2021 Olaf Spinczyk: MxKernel 4©
 O

la
f S

pi
nc

zy
k

Outline
● Manycore Programming

● Manycore OS Research

● MxKernel Architecture

● Preliminary Results

● Conclusions

12/03/2021 Olaf Spinczyk: MxKernel 5©
 O

la
f S

pi
nc

zy
k

Outline
● Manycore Programming

● Manycore OS Research

● MxKernel Architecture

● Preliminary Results

● Conclusions

12/03/2021 Olaf Spinczyk: MxKernel 6©
 O

la
f S

pi
nc

zy
k

Manycore Programming: Intel® TBB [2]
● Instead of threads: “Task-based Programming”

– Fine-grained units of work:
functions, functors, or C++ lambdas

– Lightweight: No separate stack,
register set, etc.

● Task scheduler
– Efficiently executes tasks from

double ended queues
– Automatic load balancing

● Problems
– Inefficient if tasks perform blocking operations
– Tasks must be synchronized by classic mechanisms locks→

this
thread

other
threads
(cores)

“work stealing”

12/03/2021 Olaf Spinczyk: MxKernel 7©
 O

la
f S

pi
nc

zy
k

... Programming: HyPer Morsels [3]
● Instead of threads: “Morsel-driven query execution”

– Small DB operator pipelines, JIT compiled
– Small chunks of input data
– Input and output are NUMA-local

● Scheduler (in user space)
– Fixed number of pinned threads
– Load balancing by work stealing
– Excellent scalability:

30x performance on 32 core system
● Problems

– Special purpose solution; Does not re-use OS features

The HyPer DBMS

12/03/2021 Olaf Spinczyk: MxKernel 8©
 O

la
f S

pi
nc

zy
k

Outline
● Manycore Programming

● Manycore OS Research

● MxKernel Architecture

● Preliminary Results

● Conclusions

12/03/2021 Olaf Spinczyk: MxKernel 9©
 O

la
f S

pi
nc

zy
k

Manycore OS: State-of-the-Art
● Barrelfish [4]

– Multikernel architecture

● fos [1]
– Microkernel
– Server threads

(or “fleets”)

● Tesselation [5]
– Cell concept
– Gang scheduling

➔ Still using threads. Optimizations done by app. programmer.

cores

monitoring

adaptation

app1
app2

OS

cell

12/03/2021 Olaf Spinczyk: MxKernel 10©
 O

la
f S

pi
nc

zy
k

... OS: Apple’s GCD Kernel Support
● “Grand Central Dispatch”

– Resembles TBB, but MacOS provides kernel-level support

● Problems
– Context switches for simple queue operations

● Necessary to avoid priority inversion (task vs. thread priorities)
– No clean layer structure in the kernel

Serial dispatch queue Dispatch source Queue hierarchy

queue1 2 3

● Implicit serialization
● Worker thread creation on

demand

worker thread

appl. threads
queue1 2 3

worker thread

4

async. event

● Seamless I/O integration
● Automatic triggering of success/

failure handler

● Restricted number of threads
● Guaranteed partial order

Q31 2 1 3

Q1 Q22 4

12/03/2021 Olaf Spinczyk: MxKernel 11©
 O

la
f S

pi
nc

zy
k

Outline
● Manycore Programming

● Manycore OS Research

● MxKernel Architecture

● Preliminary Results

● Conclusions

12/03/2021 Olaf Spinczyk: MxKernel 12©
 O

la
f S

pi
nc

zy
k

The MxKernel: Design Goals
1) Fair and optimized partitioning of heterogeneous resources

between multiple applications and OS components

2) Handle global concerns, such as power management,
in a central component

3) Topology-aware placement of control flows and
data to optimize performance

4) Global as well as application-specific (tailored) OS services
that can benefit from accelerators and many-core CPUs

12/03/2021 Olaf Spinczyk: MxKernel 13

The MxKernel: Key Features (1)
Goal 1:
● Fair and optimized partitioning of heterogeneous resources between multiple

applications and OS components

Solution: Elastic cells
● Provide spatial isolation of applications and global OS services (based on priorities)
● Optimized mapping (e.g. NUMA-aware)
● Span over CPU cores, but also FPGA and GPU resources, etc.

CPU cores

Application or
OS Service

Application

GPU ...FPGA
cell (elastic)

cell (elastic)

+/- cores
+/- memory

Current
load or QoS

per cell

+/- NICs
+/- storage
...

12/03/2021 Olaf Spinczyk: MxKernel 14

The MxKernel: Key Features (2)
Goal 2:
● Handle global concerns, such as power management, in a central component

Solution: Global resource management
● Provisioning, monitoring and adaptation of cells (cores, memory, clock speed, etc.)
● Enforcement of system-wide policies (low-power, anti aging, etc.)

monitoring adaptation

manycore resource management strategies

MxVisor

+/- cores
+/- memory

Current
load or QoS

per cell

+/- NICs
+/- storage
...

MxVisor
● isolation of cells
● priorities of applications
● optimized app-to-core

mapping (NUMA-aware)
● power management
● anti-aging
● fault tolerance, e.g. app

replication, handling
damaged components)

MxVisor
● isolation of cells
● priorities of applications
● optimized app-to-core

mapping (NUMA-aware)
● power management
● anti-aging
● fault tolerance, e.g. app

replication, handling
damaged components)

12/03/2021 Olaf Spinczyk: MxKernel 15

The MxKernel: Key Features (3)

MxTasking

1 2 3 1 2 3

MxTasking

1 2 3 1 2 3

cell (elastic)

cell (elastic)

brick (static)

+/- cores
+/- memory

Current
load or QoS

per cell

+/- NICs
+/- storage
...

Resource
model

Resource
model

Goal 3:
● Topology-aware placement of control flows and data to optimize performance

Solution: Task-based programming model
● Simplifies development of parallel programs
● Unified programming model for heterogeneous compute units
● Helps to avoid lock-based synchronization
● Supports automatic load balancing, optimized task placement, and cell elasticity

based on (physical) resource model MxTasking
● task-based API
● handles adaptations
● topology-aware

optimizations (e.g. NUMA)
● fine-grained application-

specific mapping decisions
● exploit heterogeneous

computing resources
● multiple specialized

instances possible

MxTasking
● task-based API
● handles adaptations
● topology-aware

optimizations (e.g. NUMA)
● fine-grained application-

specific mapping decisions
● exploit heterogeneous

computing resources
● multiple specialized

instances possible

12/03/2021 Olaf Spinczyk: MxKernel 16

The MxKernel: Key Features (4)

cell (elastic)brick (static)
Solution: Global/local OS services built on top of MxTasking
● Scalability provided automatically by MxTasking/MxVisor
● Localized state
● Thread model can be provided for legacy applications
● Family-based design for code reuse

MxTasking

MxOSApplication

1 2 3 1 2 3

MxTasking

MxOS
1 2 3 1 2 3

cell (elastic)

Resource
model

Resource
model

MxOS
● device drivers
● OS services, e.g. network

protocols, filesystems, etc.

MxOS
● device drivers
● OS services, e.g. network

protocols, filesystems, etc.

Goal 4:
● Global as well as application-specific (tailored) OS services that can benefit from

accelerators and many-core CPUs

12/03/2021 Olaf Spinczyk: MxKernel 17

The MxKernel: Architecture
CPU cores

monitoring adaptation

system software
or application
(task-based)global OS

services

manycore resource management strategies

GPU ...FPGA

MxTasking

MxOS

1 2 3 1 2 3

legacy OS
& applications

MxTasking

MxOS
1 2 3 1 2 3

MxVisor

cell (elastic)

cell (elastic)

brick (static)

+/- cores
+/- memory

Current
load or QoS

per cell

+/- NICs
+/- storage
...

Resource
model

Resource
model

12/03/2021 Olaf Spinczyk: MxKernel 18©
 O

la
f S

pi
nc

zy
k

Outline
● Manycore Programming

● Manycore OS Research

● MxKernel Architecture

● Preliminary Results

● Conclusions

12/03/2021 Olaf Spinczyk: MxKernel 19©
 O

la
f S

pi
nc

zy
k

Prototype Implementation
● … comes in three flavors (all x86/64, all experimental):

Hardware Hardware Hardware

MxTasking + App MxVisor
(based on Xen Hypervisor)

MxTasking
Cell

MxTasking
Cell

Xen Dom0
(Linux)

Linux

Intel TBB
+ App

MxTasking
+ App

Single Application Multi Application Tasking Evaluation

library OSlibrary OS

frameworkframeworkunikernelunikernel

12/03/2021 Olaf Spinczyk: MxKernel 20©
 O

la
f S

pi
nc

zy
k

Favorite Benchmark: B-Tree Operations
● Demonstrates advantages of tasks over threads

(link)

40

3525 6247

5651 58

5453M

key: 53
<value>

...

...

...

r

r

r

r

w

thread

node = root
while node is inner:
 lock_r(node)
 next = child(node,key)
 unlock_r(node)
 node = next
lock_w(node)
insert(node,key,value)
unlock_w(node)

40

3525 6247

5651 58

5453M

key: 53
<value>

...

...

...

r

r

r

r

w

if node is inner:
 lock_r(node)
 next = child(node,key)
 unlock_r(node)
 spawn
 task(next,key,value)
else:
 lock_w(node)
 insert(node,key,value)
 unlock_w(node)

sequence
of tasks

“long” thread with
unforeseeable access
pattern

“long” thread with
unforeseeable access
pattern

“handy” tasks with
known access and
locking requirements

“handy” tasks with
known access and
locking requirements

12/03/2021 Olaf Spinczyk: MxKernel 21©
 O

la
f S

pi
nc

zy
k

Task Metadata Pays Off: Prefetching [6]
● A glance into the future

of memory accesses
● Optimization is

fully automatic
● Performance impact:

● Blink-tree insert
and lookup
operations on
a 32 core Intel
Xeon E5-2690

● measured with
MxTasking on
top of Linux

● Blink-tree insert
and lookup
operations on
a 32 core Intel
Xeon E5-2690

● measured with
MxTasking on
top of Linux

12/03/2021 Olaf Spinczyk: MxKernel 22©
 O

la
f S

pi
nc

zy
k

... Pays Off: Task Synchronization [6]
● Task-to-core-mapping

can implicitly avoid locking
– Objects are assigned to cores
– Tasks accessing an object are

spawned on that core
● Problem: Load balancing not trivial, but MxKernel can help

“Coarse-grained Work Stealing” Optimistic Locking with OLFIT [7]

reader/write locks

root node bottleneck

12/03/2021 Olaf Spinczyk: MxKernel 23©
 O

la
f S

pi
nc

zy
k

Outline
● Manycore Programming

● Manycore OS Research

● MxKernel Architecture

● Preliminary Results

● Conclusions

12/03/2021 Olaf Spinczyk: MxKernel 24©
 O

la
f S

pi
nc

zy
k

Conclusions
● Fine-grained control flow abstractions: good for optimization

– Challenge: Minimize overhead
– Challenge: Exploit application knowledge
– Challenge: Many mapping strategies possible, good theory missing

● Heterogeneous computing resources can be integrated
– Challenge: Lack of low-level hardware documentation

● Hypervisor technology and OS might converge
● It’s more than just fun: Compatibility layer possible!

12/03/2021 Olaf Spinczyk: MxKernel 25©
 O

la
f S

pi
nc

zy
k

References (1)
[1] A. Agarwal, J. Miller, D. Wentzlaff, H. Kasture, N. Beckmann, C.

Gruenwald III, and C. Johnson, FOS: A factored operating system for
high assurance and scalability on multicores. Massachusetts Institue
of Technology. Technical Report AFRL-RI-RS-TR-2012-205, August
2012.

[2] Intel® Threading Building Blocks – Tutorial, Document Number
319872-009US, http://www.intel.com

[3] V. Leis, P. Boncz, A. Kemper, and T. Neumann. 2014. Morsel-driven
parallelism: a NUMA-aware query evaluation framework for the many-
core age. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data (SIGMOD '14). ACM, New York,
NY, USA, 743-754. DOI: https://doi.org/10.1145/2588555.2610507

12/03/2021 Olaf Spinczyk: MxKernel 26©
 O

la
f S

pi
nc

zy
k

References (2)
[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T.

Roscoe, A. Schüpbach, and A. Singhania. The Multikernel: A new OS
architecture for scalable multicore systems. In Proceedings of the
22nd ACM Symposium on OS Principles, Big Sky, MT, USA, October
2009.

[5] J. A. Colmenares, G. Eads, S. Hofmeyr, S. Bird, M. Moretó, D. Chou, B.
Gluzman, E. Roman, D. B. Bartolini, N. Mor, K. Asanović, and J. D.
Kubiatowicz. 2013. Tessellation: refactoring the OS around explicit
resource containers with continuous adaptation. In Proceedings of the
50th Annual Design Automation Conference (DAC '13). ACM, New
York, NY, USA, Article 76, 10 pages. DOI:
https://doi.org/10.1145/2463209.2488827

[6] J. Mühlig, M. Müller, O. Spinczyk, and J.Teubner. A novel System
Software Stack for Data Processing on Modern Hardware. Datenbank-
Spektrum, 20(3):223-230, 2020.

https://doi.org/10.1145/2463209.2488827

12/03/2021 Olaf Spinczyk: MxKernel 27©
 O

la
f S

pi
nc

zy
k

References (3)
[7] Cha SK, Hwang S, Kim K, Kwon K. Cache-conscious concurrency control

of main-memory indexes on shared-memory multiprocessor systems.
In: Proceedings of the 27th International Conference on Very Large
Databases (VLDB). Morgan Kaufmann Publishers Inc, San Francisco,
CA, USA, pp 181–190, 2001.

