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Motivation: Energy-harvesting Edge-computing Systems

Energy-harvesting Systems...

Obtain power from the environment (e.g., solar panels)

Depend on environmental conditions (e.g., sun, clouds)
Often come with limited energy storage (e.g., capacitors)
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Motivation: Energy-harvesting Edge-computing Systems

Energy-harvesting Systems...

Obtain power from the environment (e.g., solar panels)
Depend on environmental conditions (e.g., sun, clouds)
Often come with limited energy storage (e.g., capacitors)
May lose power supply anytime

→ Intermittently-powered systems may run out
of power, but must not lose system state
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Motivation: Non-volatile Memory

Non-volatile memory retains data on power outage

+ Ideal solution for energy-
harvesting applications

+ Can be used as drop-in replacement for
conventional volatile main memory

+ Commercially available

But some volatile components remain:

– CPU registers & caches
– Hardware configuration
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Motivation: Non-volatile Memory

Non-volatile memory retains data on power outage

+ Ideal solution for energy-
harvesting applications

+ Can be used as drop-in replacement for
conventional volatile main memory

+ Commercially available

But some volatile components remain:

– CPU registers & caches
– Hardware configuration→ Data in volatile components must be taken

into account when persisting the system state
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Motivation: Consistency is Key

Losing not-yet persisted volatile state leads to inconsistent system states [0].

int sensor = open(TEMPERATURE_SENSOR);
write(sensor, "oversampling x16");
� power failure

Bootup after power failure
write(sensor, "offset +2");

[0] Benjamin Ransford and Brandon Lucia. Nonvolatile memory is a broken time machine.
In: Proceedings of the ACM Workshop on Memory Systems Performance and Correctness (MSPC ’14) 3
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Motivation: Consistency is Key

Losing not-yet persisted volatile state leads to inconsistent system states [0].

int sensor = open(TEMPERATURE_SENSOR);
write(sensor, "oversampling x16");
� power failure

Bootup after power failure
write(sensor, "offset +2");

Sensor Configuration

Oversampling: x1
O�set: +2

Expected Configuration

Oversampling: x16
O�set: +2

[0] Benjamin Ransford and Brandon Lucia. Nonvolatile memory is a broken time machine.
In: Proceedings of the ACM Workshop on Memory Systems Performance and Correctness (MSPC ’14)

→ Losing volatile state eventually leads to inconsistencies
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Design & Implementation of Neverlast



Neverlast: Handling Device and System Consistency

Consistency comprises...

Application and OS data
Volatile cache and register contents
But also volatile hardware configuration

Therefore, Neverlast...

1. Minimizes the volatile state by running in NVRAM
2. Saves registers & caches on power outage
3. Traces device-configuration syscalls
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Neverlast: Detecting & Handling Power Outages[1]

Detecting Power Outages

1. Voltage comparator monitors VCC and inter-
rupts the CPU when VCC falls below threshold

2. ISR stores remaining volatile data (registers)
3. Marks stored system state as valid
4. Stops system execution

Recovering from Power Outages

1. Check stored system state for validity
2. Restore volatile state
3. Continue execution

VCC

Vref

<? Interrupt

[1] Neverlast: Towards the Design and Implementation of the NVM-based Everlasting Operating System.
Christian Eichler, Henriette Hofmeier, Stefan Reif, Timo Hönig, Jörg Nolte, and Wolfgang Schröder-Preikschat.
In: Proceedings of the 54th Hawai’i International Conference on System Sciences (HICSS-54) 6
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Neverlast: Tracing Device-configuration System Calls[2]

Interrupt-based Mechanism Problematic for Peripheral Devices

Unknown device state
Configuration not readable

Slow communication bus
High power consumption

Neverlast’s Approach: Trace System Calls

Transaction-like behavior (via replay_start and replay_stop)
Log system calls (including parameters) to persistent log
Replay log after power outage

[2] Neverlast: an NVM-centric Operating System for Persistent Edge Systems.
Christian Eichler, Henriette Hofmeier, Stefan Reif, Timo Hönig, Jörg Nolte, and Wolfgang Schröder-Preikschat.
In: Proceedings of the 12th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys 2021)

7



Neverlast: Tracing Device-configuration System Calls[2]

Interrupt-based Mechanism Problematic for Peripheral Devices

Unknown device state
Configuration not readable

Slow communication bus
High power consumption

Neverlast’s Approach: Trace System Calls

Transaction-like behavior (via replay_start and replay_stop)
Log system calls (including parameters) to persistent log
Replay log after power outage

[2] Neverlast: an NVM-centric Operating System for Persistent Edge Systems.
Christian Eichler, Henriette Hofmeier, Stefan Reif, Timo Hönig, Jörg Nolte, and Wolfgang Schröder-Preikschat.
In: Proceedings of the 12th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys 2021) 7



Neverlast: Tracing Device-configuration System Calls[2]

Interrupt-based Mechanism Problematic for Peripheral Devices

Unknown device state
Configuration not readable

Slow communication bus
High power consumption

Neverlast’s Approach: Trace System Calls

Transaction-like behavior (via replay_start and replay_stop)
Log system calls (including parameters) to persistent log
Replay log after power outage

[2] Neverlast: an NVM-centric Operating System for Persistent Edge Systems.
Christian Eichler, Henriette Hofmeier, Stefan Reif, Timo Hönig, Jörg Nolte, and Wolfgang Schröder-Preikschat.
In: Proceedings of the 12th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys 2021)

→ Use syscall-based transaction mechanism for peripheral devices
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Neverlast: Tracing Device-configuration Syscalls

1 void app_main() {
2 int sen = open(TEMP_SENSOR)
3 replay_start(sen, 1)
4 write(sen, "oversampling x16")

5 write(sen, "offset +2")
6 replay_stop(sen)
7 /*... */
8 }

//store volatile registers
pushm.a #12, r15
poweroff()

� power-failure interrupt //on power recovery
int sen = open(TEMP_SENSOR)
write(sen, "oversampling x16")

popm.a #12, r15
return
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Neverlast: Tracing Device-configuration Syscalls

1 void app_main() {
2 int sen = open(TEMP_SENSOR)
3 replay_start(sen, 1)
4 write(sen, "oversampling x16")

5 write(sen, "offset +2")
6 replay_stop(sen)
7 /*... */
8 }

//store volatile registers
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poweroff()

� power-failure interrupt

//on power recovery
int sen = open(TEMP_SENSOR)
write(sen, "oversampling x16")

popm.a #12, r15
return

Sensor Configuration

Oversampling: - O�set: -
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Neverlast: Tracing Device-configuration Syscalls

1 void app_main() {
2 int sen = open(TEMP_SENSOR)
3 replay_start(sen, 1)
4 write(sen, "oversampling x16")

5 write(sen, "offset +2")
6 replay_stop(sen)
7 /*... */
8 }

//store volatile registers
pushm.a #12, r15
poweroff()

� power-failure interrupt //on power recovery
int sen = open(TEMP_SENSOR)
write(sen, "oversampling x16")

popm.a #12, r15
return

Sensor Configuration

Oversampling: x16 O�set: +2

8



Evaluation



Evaluation - Setup

MSP-EXP430FR5994 LaunchPad
Development Kit

16 bit RISC processor, up to 24 MHz
8 KB of SRAM
256 KB of FRAM with 2-way-2-line
read cache (2x 8 Byte)

Remote-controlled via relais card
Shunt-based energy measurement
Tektronix MSO 4034
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Evaluation - Power Consumption by Supply Monitoring
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→ Power-failure detection consumes measurable,
but relatively small amount of power
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Evaluation - Performance of NVRAM vs. RAM (sequential read/write)
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Evaluation - Performance of NVRAM vs. RAM (non-sequential read/write)
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→ Working purely in FRAM can slightly reduce
performance and increase energy demand
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Neverlast – Conclusion

Systems with non-volatile memory (will) become more
and more widespread, but come with challenges:

? Energy-harvesting systems may lose power anytime

→ Monitor power supply & detect power outages

? Consistency in systems with mixed volatility...

→ Save volatile system state (registers) on power failure

? and peripheral devices

→ Trace & replay device-configuration syscalls
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A Peak into the Future...



Operating Systems and their Memories

Persistent memory used to be (really) slow and high latency

Think of: Mechanical hard drives
OSes avoid persistent memory when possible

→ Use of volatile caches

The OS handles RAM volatility in software:

Periodic flush of write-back file caches
Periodic flush of the superblock & inode cache
„Hibernate to disk“
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Running Linux in NVRAM – without Volatile RAM

Imagine using (only) non-volatile main memory:

Previously volatile data is no longer volatile
→ OS persistency measures less/no longer important

But volatile hardware components remain:
caches, registers, device configuration

NEON / Linux on Intel Optane:
Port Neverlast’s ideas to Linux
Identify & remove obsolete
persistency measures
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Conclusion

NVRAM-centric operating systems come with
challenges and opportunities:

? Persistency & consistency in
presence of volatile components

+ Optimization of the OS:
+ Simplifications
+ Reduced TCB
+ Reduced jitter

We’re Hiring
Bochum Operating Systems
and System Software Group

HO 6277/1-1
SCHR 603/10-2
CRC/TRR 89PC1

16KIS1315

18



Conclusion

NVRAM-centric operating systems come with
challenges and opportunities:

? Persistency & consistency in
presence of volatile components

+ Optimization of the OS:
+ Simplifications
+ Reduced TCB
+ Reduced jitter

We’re Hiring
Bochum Operating Systems
and System Software Group

HO 6277/1-1
SCHR 603/10-2
CRC/TRR 89PC1

16KIS1315

18


