
Reproducing System Software Research
A Case Study

Michael Engel
Department of Computer Science

NTNU
https://multicores.org

https://multicores.org

Reproducing System Software Research: A Case Study 2

Motivation
• Reading a paper doesn’t imply you understand it

• Details might be missing or unclear
• Details of a paper might be

• …unintentionally or intentionally incorrect
• …described but never implemented 😮

• All these things can slip through the usual peer review
process for conferences and journals!

• Reproducibility of research results is important
• Gives confidence that work exists and is useful
• Can provide a basis to build own research upon

• (Relatively) Recent trend: require reproducibility
• Delivery of paper + "artifacts" = code, data, …
• Different levels of artifact evaluation

• What is the situation for systems papers?

Reproducing System Software Research: A Case Study 3

Levels of usefulness

Reproducing System Software Research: A Case Study 4

Example: Persistence from app to hardware

• Persistent operating systems are no new invention
• "hot" research topic in the 1980s/90s

• Smalltalk, Lisp (Interlisp, Symbolics), IBM OS/400
• Eumel/Elan and L3 [1], BirliX [2]

• Implementation of persistence
• All system state was kept in RAM

• Snapshots generated on non-volatile storage
• …when shutting down the system

• crashes ➛ start from initial (boot) state
• …initiated manually or at regular intervals

• tradeoff overhead ↔ amount of work lost

Reproducing System Software Research: A Case Study 5

What’s the state in 2021?
• Persistent, byte-addressable main memory

is available now

• Can we implement persistent system images
on top of persistent main memory?

• Several challenges, e.g.
• Persistence semantics

• Ensure consistency
• Non-persistent state

• Protection
• Heap and stack overflows

Reproducing System Software Research: A Case Study 6

Persistence challenges: protection
• Wanted: protection for small regions of memory

• e.g. objects on stack and heap
• Persistent main memory ➛ persistent errors

• Do we really need this?
• Is language-based protection not safe enough?
• Should the operating system trust the compiler? [3]

Language-based protection has some significant weaknesses:

• the TCB of a system depending on language protection is larger
because now we must trust the compilers and code verifiers as well as
the "system" TCB objects provided by the system

• language-based protection has its own performance problems and the
optimizations to improve performance introduce subtle security flaws

[4]

Reproducing System Software Research: A Case Study 7

Hardware-based protection today
• Problems with current virtual memory

• Fixed page size (e.g. 4kB)
• Trend towards even larger sizes
• Protection is tied to translation

• Look for existing fine-grained approaches
• Are we just trying to reinvent the wheel?

• One approach: Liedtke’s Guarded Page Tables (GPT) [5]
• GPT properties to investigate for today’s systems

• Page table depth versus page size?
• Effects of small pages on TLB miss rate?
• How can we implement a GPT approach today?

1 2 3 4 5 6 7

small data objects

hardware page

Reproducing System Software Research: A Case Study 8

Guarded page tables
• GPTs supplement page table entries (PTEs) by a guard

• Guard = bit string of variable length

Translation steps:
1. PTE is selected by the highest part of the virtual address
2. Selected entry contains a

pointer and the guard g
3. If g is prefix of the

remaining virtual address
• Translation continues

with remaining postfix
• …or terminates with

postfix as page offset

0 1

00 01 10 11

0 1

data page

g = 1100101

v = 0 | 1100101 100101100111

v’ = 10 | 0101 100111

g = 0101

g = 0

v’’ = 1 | 0 0111

offset = 0111

Reproducing System Software Research: A Case Study 9

How it started…
• Idea: reproduce GPT ideas from Liedtke’s papers [5]

• Sometimes, papers are as sparse as GPT address
spaces 😀

• Can we find details in
Liedtke’s PhD thesis [6]?
• Not available in electronic form
• A printed copy can be found in the NTNU library!

• Were GPTs ever implemented?
• Yes, at UNSW in L4/MIPS and L4/Alpha
• Useful details in the related paper [7] and docs [8]

Reproducing System Software Research: A Case Study 10

Finding and compiling L4/MIPS
• Finding the source code

• not so easy…
• Finally, found four versions

• 71, 75, 79, 81

• This used gcc-2.8.1 from 1998…
• Doesn’t compile on current Linux
• Set up a Debian 3.0 x86 VM
• The compiled cross-compiler +

L4 tools runs on current Linux!

Abstract

This document is an attempt to document the internal structure of L4 and its operations. It is based on the L4
implementation for the MIPS R4x00 (L4/MIPS), kernel version 79 (February 1999). The document is meant as
an aid in teaching operating systems internals, and as a guide for kernel implementors. While the actual code
discussed is very specific to the MIPS processor, much of the overall structure and logic of L4 is quite uniform
across platforms.

The present version of this report documents L4/MIPS data structures, exception handling and the IPC system
call. Documentation of the implementation of the other system calls, and issues such as scheduling, will be added
in the near future.

Reproducing System Software Research: A Case Study 11

Hardware platform
• Problem when reproducing system software

• The OS runs directly on the hardware…
• Special hardware required for implementing GPT

• Software TLB miss handler instead of hardware PT walk
• Only implemented on (early) MIPS and Alpha

• What machines did L4/MIPS run on?
• "The kernel is stable since August 1997, with minor

enhancements and bug fixes since. It has been tested on
an R4600-based SGI Indy, on the Algorithmics P4000i
prototyping board, as well as on the R4700-based U4600
system developed at UNSW as a research and teaching
platform." [8]

• Where can we find specialized 25 year old hardware?

Reproducing System Software Research: A Case Study 12

Running L4/MIPS
• NTNU’s "datamuseet" helps: found an SGI Indy!

• Unfortunately, it has the "wrong" CPU (R5000) [7]:

10 2.2 Relevant Features of the MIPS R4x00 Processor

2.2 Relevant Features of the MIPS R4x00 Processor

2.2.1 Target systems

The kernel code described in this document is for a uniprocessor R4600/R4700 system. There are a number of
minor differences between various processors of the R4x00 family. For the purpose of kernel code, no significant
differences exist between the R4600 and the R4700, and we will use the term “R4600” to represent both processor
models. Similarly, the differences between the R4000 [Hei93] and the R4400 are very minimal, and we will use
the term “R4000” to refer to both. For most of our purposes there is no need to distinguish between processors of
the family, and we will use the generic term “R4x00” to refer to any of them.

Other related processors, such as the R5000 and the R10000 will probably run L4/MIPS without major changes.
Particularly the R5000’s MMU seems to be similar enough to the R4x00 to allow the code to run virtually un-
changed. However, the R5000 and R10000 are multi-issue CPUs, and no attempt has been made in the kernel to
schedule instructions for multiple issue.

2.2.2 R4x00 general features

The R4x00 processor family is a 64-bit architecture which supports full compatibility with the 32-bit MIPS CPUs
R2000 and R3000. This is achieved by supporting a 32-bit execution mode.

Implementation choice: 32-bit execution is not supported by L4/MIPS and is therefore not covered here.

The processor is a RISC design which issues one instruction per clock cycle. The only addressing mode is base-
register plus 16-bit, signed immediate offset. Most instructions execute in a single cycle.

On the R4600, which has a 5 stage pipeline, jump and branch instructions have an additional one cycle delay, and
load instructions also have a one cycle delay. On the R4000, which has a 8 stage pipeline, the branch delay is
3 cycles and the load delay 2 cycles. On all R4x00 processors, the instruction immediately following a jump or
branch (the load/branch delay slot) is always executed while the target instruction is being fetched.

The pipeline will stall in the case of an attempted access to the result of a load before it is available. Hence
scheduling instructions in a load delay slot will hide the delay but is not necessary for correct execution.

Multiplication and division instructions require between 10 and 133 cycles to complete. They leave their results
in two special registers, HI and LO, and the pipeline stalls until the result is available.

The processor can be configured to operate little-endian or big-endian, and can also switch endianess between
user and kernel mode.

Implementation choice: L4/MIPS uses big-endian only.

MIPS instructions support four data types: byte (b, 8 bits), half word (h, 16 bits), word (w, 32 bits), and double
word, or dword (d, 64 bits). Load and store instructions support all four sizes, but data must be aligned to size.3

The processor features 32 general-purpose registers, r0–r31, all 64 bits wide. Assembler programs use symbolic
names based on compilers’ usage conventions. These are summarised in Table 2.1. Register r0 reads as zero and
ignores writes. Register r31 is implicitly used by the jump-and-link (jal) instruction.

The following register conventions are important to observe when writing kernel code:

• The AT register is used by the assembler to store intermediate results of pseudo-instruction macros. If
used for any other purpose the appropriate instructions must be surrounded by .set at and .set noat
directives to prevent interference from assembler macros.

3A special instruction is lui, which loads the specified immediate value into the second-least significant byte, zeroing the least significant
byte, and sign extending.

10 2.2 Relevant Features of the MIPS R4x00 Processor

2.2 Relevant Features of the MIPS R4x00 Processor

2.2.1 Target systems

The kernel code described in this document is for a uniprocessor R4600/R4700 system. There are a number of
minor differences between various processors of the R4x00 family. For the purpose of kernel code, no significant
differences exist between the R4600 and the R4700, and we will use the term “R4600” to represent both processor
models. Similarly, the differences between the R4000 [Hei93] and the R4400 are very minimal, and we will use
the term “R4000” to refer to both. For most of our purposes there is no need to distinguish between processors of
the family, and we will use the generic term “R4x00” to refer to any of them.

Other related processors, such as the R5000 and the R10000 will probably run L4/MIPS without major changes.
Particularly the R5000’s MMU seems to be similar enough to the R4x00 to allow the code to run virtually un-
changed. However, the R5000 and R10000 are multi-issue CPUs, and no attempt has been made in the kernel to
schedule instructions for multiple issue.

2.2.2 R4x00 general features

The R4x00 processor family is a 64-bit architecture which supports full compatibility with the 32-bit MIPS CPUs
R2000 and R3000. This is achieved by supporting a 32-bit execution mode.

Implementation choice: 32-bit execution is not supported by L4/MIPS and is therefore not covered here.

The processor is a RISC design which issues one instruction per clock cycle. The only addressing mode is base-
register plus 16-bit, signed immediate offset. Most instructions execute in a single cycle.

On the R4600, which has a 5 stage pipeline, jump and branch instructions have an additional one cycle delay, and
load instructions also have a one cycle delay. On the R4000, which has a 8 stage pipeline, the branch delay is
3 cycles and the load delay 2 cycles. On all R4x00 processors, the instruction immediately following a jump or
branch (the load/branch delay slot) is always executed while the target instruction is being fetched.

The pipeline will stall in the case of an attempted access to the result of a load before it is available. Hence
scheduling instructions in a load delay slot will hide the delay but is not necessary for correct execution.

Multiplication and division instructions require between 10 and 133 cycles to complete. They leave their results
in two special registers, HI and LO, and the pipeline stalls until the result is available.

The processor can be configured to operate little-endian or big-endian, and can also switch endianess between
user and kernel mode.

Implementation choice: L4/MIPS uses big-endian only.

MIPS instructions support four data types: byte (b, 8 bits), half word (h, 16 bits), word (w, 32 bits), and double
word, or dword (d, 64 bits). Load and store instructions support all four sizes, but data must be aligned to size.3

The processor features 32 general-purpose registers, r0–r31, all 64 bits wide. Assembler programs use symbolic
names based on compilers’ usage conventions. These are summarised in Table 2.1. Register r0 reads as zero and
ignores writes. Register r31 is implicitly used by the jump-and-link (jal) instruction.

The following register conventions are important to observe when writing kernel code:

• The AT register is used by the assembler to store intermediate results of pseudo-instruction macros. If
used for any other purpose the appropriate instructions must be surrounded by .set at and .set noat
directives to prevent interference from assembler macros.

3A special instruction is lui, which loads the specified immediate value into the second-least significant byte, zeroing the least significant
byte, and sign extending.

Reproducing System Software Research: A Case Study 13

Hardware is hard…
• Emulators are an alternative

• Sulima [9] https://
www.jantar.org/sulima/

• MAME Indy emulation
https://sgi.neocities.org

• MAME runs IRIX… but does
not boot L4/MIPS

• Sulima was built to run L4/
MIPS – three versions online:

• sulima-mips-020813,
sulima-030910,
sulima-src-051124

• The first one actually
works with L4/MIPS!

https://www.jantar.org/sulima/
https://www.jantar.org/sulima/
https://sgi.neocities.org

Reproducing System Software Research: A Case Study 14

…how it’s going
• L4/MIPS compiles and can be run in the Sulima emulator

• Allows qualitative analyses
• e.g. examining page tables structure, TLB content

• Allows modifications
• What’s missing?

• More precise emulations for quantitative analyses,
e.g. timing – Sulima is not cycle-exact, does not emulate the memory hierarchy

• Application and benchmark code
• Future ideas (for student projects):

• Run Mungi [10] or some older L4-based example student projects

Reproducing System Software Research: A Case Study 15

Takeaways
• Many systems publications from the 1980s/90s are not reproducible

• No hardware or simulator available
• No code was published

• The UNSW L4 project already applied good practices
• Suffered from "bit rot" and unavailability of old web sites
• Documentation for code in addition to papers [8]
• Simulator available (no quantitative analyses)

• Compiling the code took some effort (cross-compiler setup)
• We need to archive the software source code, compiled binaries

and the development environment
• The OS (source code) alone is not enough

• Publish binaries of the OS to check if local compilation is
equivalent to code used for a publication

• Also publish application and benchmark code

Reproducing System Software Research: A Case Study 16

Future work
• Teach students to work with system code
• Current experiment at NTNU

• Seminar with system software topics
• Select small and (relatively) simple papers

• Enable students to understand a paper
• …by reproducing a central idea from a paper

• e.g. tickless scheduling, redundancy,
new approaches to syscalls, ACLs, …

• Based on MIT’s xv6 OS running on RISC-V
• qemu or Nezha Allwinner D1 board
• https://github.com/michaelengel/xv6-d1
• Alternatives: Raspberry Pi or x86

https://github.com/michaelengel/xv6-d1

Reproducing System Software Research: A Case Study 17

Surprises…

"Mut zur Lücke"? [8]

Reproducing System Software Research: A Case Study 18

1. Jochen Liedtke, A persistent system in real use – experiences of the first 13 years,
Proceedings of IWOOOS, 1993, pp. 2-11, doi: 10.1109/IWOOOS.1993.324932

2. Hermann Härtig, Winfried Kühnhauser, Wolfgang Lux and W. Reck,
Operating system(s) on top of persistent object systems – the BirliX approach,
Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, 1992, pp. 790-799 vol.1, doi:
10.1109/HICSS.1992.183233

3. Ken Thompson, Reflections on trusting trust,
Commun. ACM 27, 8 (Aug 1984), 761–763. doi:https://doi.org/10.1145/358198.358210

4. Trent Jaeger, Jochen Liedtke and Nayeem Islam, Operating System Protection for Fine-Grained Programs,
Proceedings of the 7th USENIX Security Symposium, 1998

5. Jochen Liedtke, Address Space Sparsity and Fine Granularity,
ACM SIGOPS Oper. Syst. Rev. 29(1): 87-90 (1995)

6. Jochen Liedtke: On the realization of huge sparsely occupied and fine grained address spaces,
Berlin Institute of Technology, Oldenbourg 1996, ISBN 3-486-24185-0

7. Jochen Liedtke, Kevin Elphinstone,
Guarded Page Tables on Mips R4600 OR An Exercise in Architecture-Dependent Micro Optimization,
ACM SIGOPS Oper. Syst. Rev. 30(1): 4-15 (1996)

8. Gernot Heiser, Inside L4/MIPS: Anatomy of a High-Performance Microkernel,
UNSW School of Computer Science and Engineering, 2001

9. Patryk Zadarnowski, The Design and Implementation of an Extendible Instruction Set Simulator,
Undergraduate Thesis, School of Computer Science and Engineering University of New South Wales, 2000

10. Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, Jochen Liedtke,
The Mungi Single-Address-Space Operating System, Softw. Pract. Exp. 28(9): 901-928 (1998)

References

