® NTNU | bowegian niversity of

Reproducing System Software Research
A Case Study

Michael Engel
Department of Computer Science
NTNU

https://multicores.org

https://multicores.org

Motivation

« Reading a paper doesn’t imply you understand it
» Details might be missing or unclear
« Details of a paper might be
 ...unintentionally or intentionally incorrect

* ...described but never implemented ()

« All these things can slip through the usual peer review
process for conferences and journals!

« Reproducibility of research results is important
» Gives confidence that work exists and is useful
« Can provide a basis to build own research upon
* (Relatively) Recent trend: require reproducibility
« Delivery of paper + "artifacts" = code, data, ...
 Different levels of artifact evaluation
« What is the situation for systems papers?

@ NTNU | S oy Reproducing System Software Research: A Case Study 2

Levels of usefulness

Functional

No Badge

Artifacts
documente
d,
consistent,
complete,
exercisable
, and
include
appropriate
evidence of
verification
and
validation

@ NTNU |

Reusable

-

Functional + very
carefully
documented and
well-structured to
the extent that
reuse and
repurposing is
facilitated. In
particular, norms
and standards of
the research
community for
artifacts of this
type are strictly
adhered to.

Norwegian University of
Science and Technology

Available

s

Functional +
placed on a
publicly
accessible
archival
repository. A DOI
or link to this
repository along
with a unique
identifier for the
object is
provided.

Replicated

-

Available +
main results of
the paper have
been obtained
ina
subsequent
study by a
person or team
other than the
authors, using,
in part, artifacts
provided by the
author.

Reproduced

-

Available + the
main results of
the paper have
been
independently
obtained in a
subsequent
study by a
person or team
other than the
authors,
without the use
of
author-supplie
d artifacts.

Reproducing System Software Research: A Case Study

3

Example: Persistence from app to hardware

* Persistent operating systems are no new invention
* "hot" research topic in the 1980s/90s
« Smalltalk, Lisp (Interlisp, Symbolics), IBM OS/400

. Eumel/Elan and L3 [1], BirliX [2] [E UWE!

« Implementation of persistence <X L3
« All system state was kept in RAM

« Snapshots generated on non-volatile storage
* ...when shutting down the system

« crashes > start from initial (boot) state

« ...iInitlated manually or at regular intervals

 tradeoff overhead «— amount of work lost

(symbolcs i)

@ NTNU | S oy Reproducing System Software Research: A Case Study 4

What’s the state in 20217

* Persistent, byte-addressable main memory
Is available now

.
.
““
.

a®
at®
Py
DY

« Several challenges, e.qg.
» Persistence semantics ' . L e
 Ensure consistency
* Non-persistent state

* Protection
» Heap and stack overflows ===

@ NTNU | S oy Reproducing System Software Research: A Case Study 5

Persistence challenges: protection

« Wanted: protection for small regions of memory
* e.g. objects on stack and heap
» Persistent main memory > persistent errors
* Do we really need this?
 |s language-based protection not safe enough?
« Should the operating system trust the compiler? [3]

Language-based protection has some significant weaknesses: [4]

 the TCB of a system depending on language protection is larger
because now we must trust the compilers and code verifiers as well as
the "system" TCB objects provided by the system

 language-based protection has its own performance problems and the
optimizations to improve performance introduce subtle security flaws

© N'TINU | Sonwegian University of Reproducing System Software Research: A Case Study

Science and Technology

6

Hardware-based protection today

* Problems with current virtual memory hardware page

» Fixed page size (e.g. 4kB) 4 Is
* Trend towards even larger sizes ~——
* Protection is tied to translation vhdat/'éjects

* Look for existing fine-grained approaches
» Are we just trying to reinvent the wheel?

* One approach: Liedtke’s Guarded Page Tables (GPT) [9]
« GPT properties to investigate for today’s systems

« Page table depth versus page size?

« Effects of small pages on TLB miss rate?

 How can we implement a GPT approach today?

@ NTNU | S oy Reproducing System Software Research: A Case Study 7

Guarded page tables

« GPTs supplement page table entries (PTEs) by a guard
« Guard = bit string of variable length

Translation steps:
1. PTE is selected by the highest part of the virtual address

2. Se_lected entry contains a v =0 1100101 100101100111
pointer and the guard g / k o = 1100101
3. If g is prefix of the
remaining virtual address v =10/0707 100111 [0 | o 11
* Translation continues _g=0101
with remaining postfix v=1100111 [0]
 ...or terminates with \‘L9=0
postfix as page offset offset =0111 | data page

@ NTNU | S oy Reproducing System Software Research: A Case Study 8

How it started...

* |dea: reproduce GPT ideas from Liedtke’s papers [5]
« Sometimes, papers are as sparse as GPT address

spaces &
l E BOor:)Kthe realization of huge sparsely-occupied and fine-grained address
spaces
« Can we find details in
Liedtke,s P h D th eSiS [6] ? Available at NTNU Universitetsbiblioteket

* Not available in electronic form
« A printed copy can be found in the NTNU library!

 Were GPTs ever implemented?
* Yes, at UNSW in L4/MIPS and L4/Alpha
« Useful details in the related paper [7] and docs [8]

@ NTNU | S oy Reproducing System Software Research: A Case Study

Finding and compiling L4/MIPS

* Finding the source code o0 M < & fip.coc.defsoftware/mis
* not so easy...

« Finally, found four versions

« 71,75,79, 81 i

mipsL4.tar.gz

Index of /software/misc/

This document is an attempt to document the internal structure of L4 and its operations. It is based on the L4
implementation for the MIPS R4x00 (L4/MIPS), kernel version 79 (February 1999). The document is meant as

README for L4/MIPS

SOURCEFORGE
Prequisites before building :
1) You need mips-sgi-irix6 cross—-compiler development tools. L4/MIPS
* This used gcc-2.8.1 from 1998... Brought toyou by:

« Doesn’'t compile on current Linux s
« Set up a Debian 3.0 x86 VM

 The compiled cross-compiler +
L4 tools runs on current Linux!

This project has no files.

@ NTNU | S oy Reproducing System Software Research: A Case Study 10

Hardware platform

* Problem when reproducing system software
* The OS runs directly on the hardware...

« Special hardware required for implementing GPT
« Software TLB miss handler instead of hardware PT walk
* Only implemented on (early) MIPS and Alpha

« What machines did L4/MIPS run on?

« "The kernel is stable since August 1997, with minor
enhancements and bug fixes since. It has been tested on
an R4600-based SGI Indy, on the Algorithmics P4000i
prototyping board, as well as on the R4700-based U4600
system developed at UNSW as a research and teaching
platform." [8]

 Where can we find specialized 25 year old hardware?

© N'TINU | Sonwegian University of Reproducing System Software Research: A Case Study 11

nce and Technology

Running L4/MIPS

« NTNU’s "datamuseet" helps: found an SGI Indy!
« Unfortunately, it has the "wrong" CPU (R5000) [7]:

The kernel code described in this document is for a uniprocessor R4600/R4700 system. There are a number of
minor differences between various processors of the R4x00 family. For the purpose of kernel code, no significant

Other related processors, such as the R5000 and the R10000 will probably run L4/MIPS without major changes.
Particularly the R5000’s MMU seems to be similar enough to the R4x00 to allow the code to run virtually un-
changed. However, the R5000 and R10000 are multi-issue CPUs, and no attempt has been made in the kernel to

/(l’((/ll!!

JH!HH'.:’,
[

@ NTNU | S oy Reproducing System Software Research: A Case Study 12

Sulima v1.0.0 built on Mar 13 2021, 18:05:47
Copyright (C) 1998-2000 Patryk Zadarnowski

Avaliable modules:

||
Sulima: koala-R4600 R4600 MIPS III Processor
a r Wa re Is a r Sulima: MIPS64SimpleBus A minimal MIPS64 memory and I/0 controller.
EEnE Sulima: ZilogESCC

Zilog Enhanced Serial Communication Controller

Sulima: MT48Tx2 T48T02/12 Timekeeper(R) RAM
Sulima: ROM Basic ROM module.
Installed modules:
. Sulima: nvram
 Emulators are an alternative Sulina: serial

Sulima: rom
Sulima: bus

e Sulima [9] https:// e R

Beginning simulation....

I I Sulima: Simulati d (1 CPU).
WWW-_Ianta r-org/su Ilma/ L:ader: reI:c::i:; giigis bytes from OxFFFFFFFFBFCO12F8 to @xFFFFFFFF80050000

Loader: relocating 0x00b4® bytes from OxFFFFFFFFBFC113F@ to OxFFFFFFFF80061000

. Loader: relocating 8x24000 bytes from 8xFFFFFFFFBFC11F30 to @xFFFFFFFFB0063000
° MAM E |ndy en |U|at|0n Loader: jumping to @xFFFFFFFF80060018

Interrupt serial driver at 0x1002000000060401
main: Mapping tester ©x1002000000080001

httDS://Sgi_ neOCitieS_org main: This test will take a while, please be patient.

main: L4uK version 80 build 6

main: Memory size 64MB
Y MAM E ru nS IRIX but does main: L4 reserved below 8x64000 and above 8x3999000
LELI main: serial addr 0x64000 size 0x5000
main: map_main addr 0x69000 size 0x4000

not boot L4/M I PS main: map_child addr 0x80000 size 0x4000
main: child map_child addr 0x80000 size Ox4000 entry 0x82des

main: wmap_gchild addr 0x84000 size 0x3000
. . main: grandchild map_gchild addr 0x84000 size 0x3000 entry 0x85ed@

e Sulima was built to run L4/ main: ot 0xe0000
main: got ©x81000
. . . main: got ©Ox82000
MIPS — three versions online: [
main: got ©xB84000
main: got ©x85000

« sulima-mips-020813, S e
sulima-030910, S e
sulima-src-051124 TCB BASE: 0xcP000900000cH000

[KDBG> pgpt

0x64000 pted = Ox64780 ptel
0x66000 pted = Ox66780 ptel = Ox67780

0x68000 pted = Ox68780 ptel = Ox0@

0x1cB800000 pted = Ox1cB00580 ptel = Ox0
0xc000000000000000 pted® = Ox487cO ptel = Ox496cO
0xc000000000040000 pted® = Ox477cO ptel = Ox496cO

* The first one actually
works with L4/MIPS! :

Norwegian University of . v = 0xc000000020000000 pted = Ox487cOd ptel = Ox496¢c0
B NTNU ‘ Science and Technology Reproducing S :2;:,118:”; Zzzgeaf AR

0x65780

Cc €< <Cc<Cc << <<
LU LI I [LA L I [}
n

KoBG>

https://www.jantar.org/sulima/
https://www.jantar.org/sulima/
https://sgi.neocities.org

...how it’s going

« L4/MIPS compiles and can be run in the Sulima emulator
« Allows qualitative analyses
* e.g. examining page tables structure, TLB content
» Allows modifications
* What's missing?

« More precise emulations for quantitative analyses,
e.g. timing — Sulima is not cycle-exact, does not emulate the memory hierarchy

« Application and benchmark code
« Future ideas (for student projects):
 Run Mungi [10] or some older L4-based example student projects

SDI0S06 (T Bingmann, M. Braun, T. Geiger, A. Maehler - University of Karlsruhe)
This is a toy operating system developed during the "Systerm Design and Implementation’ course 2006 at the University of Karlsruhe.

SC/0S (S. Hack, C. Ceelen - University of Karlsruhe)
SC/0S is an experimental multi-server toy operating system using Flick. It was built by two students in the course "System Design and Implementation’ in summer 2001.

ChacmOS (A. Haeberlen, C. Schwarz, M. Vilp, H. Wenske - University of Karlsruhe)
ChacmOS is an experimental multi-server toy operating system. It was built by four students in the course "System Design and Implementation” in summer 2000.

@ NTNU | S oy Reproducing System Software Research: A Case Study 14

Takeaways

« Many systems publications from the 1980s/90s are not reproducible
* No hardware or simulator available
 No code was published
« The UNSW L4 project already applied good practices
« Suffered from "bit rot" and unavailability of old web sites
« Documentation for code in addition to papers [8]
« Simulator available (no quantitative analyses)
« Compiling the code took some effort (cross-compiler setup)

 We need to archive the software source code, compiled binaries
and the development environment

 The OS (source code) alone is not enough

« Publish binaries of the OS to check if local compilation is
equivalent to code used for a publication

» Also publish application and benchmark code

@ NTNU | S oy Reproducing System Software Research: A Case Study 15

Future work

Teach students to work with system code
Current experiment at NTNU

« Seminar with system software topics

« Select small and (relatively) simple papers
Enable students to understand a paper

« ...by reproducing a central idea from a paper

« e.g. tickless scheduling, redundancy,
new approaches to syscalls, ACLs, ...

Based on MIT’s xv6 OS running on RISC-V
« gemu or Nezha Allwinner D1 board

* https://github.com/michaelengel/xv6-d1
« Alternatives: Raspberry Pi or x86

Available + the
main results of
the paper have
been
independently
obtained in a
subsequent
study by a
person or team
other than the
authors,
without the use
of
author-supplie
d artifacts.

@ NTNU | S oy Reproducing System Software Research: A Case Study

16

https://github.com/michaelengel/xv6-d1

Surprises...

Chapter 7

Other Stuff (Provisional)

7.1 Scheduling 72 Interrupts
Discuss wakeup queue structure.
Blah blah blah... 7.3 Initialisation

74 Sigma Zero
"Mut zur Lucke"? [8]

@ NTNU | S oy Reproducing System Software Research: A Case Study

17

References

1. Jochen Liedtke, A persistent system in real use — experiences of the first 13 years,
Proceedings of IWOOOS, 1993, pp. 2-11, doi: 10.1109/IWO00S.1993.324932

2. Hermann Hartig, Winfried Kihnhauser, Wolfgang Lux and W. Reck,
Operating system(s) on top of persistent object systems — the BirliX approach,
Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, 1992, pp. 790-799 vol.1, doi:
10.1109/HICSS.1992.183233

3. Ken Thompson, Reflections on trusting trust,
Commun. ACM 27, 8 (Aug 1984), 761—-763. doi:https://doi.org/10.1145/358198.358210

4. Trent Jaeger, Jochen Liedtke and Nayeem Islam, Operating System Protection for Fine-Grained Programs,
Proceedings of the 7th USENIX Security Symposium, 1998

5. Jochen Liedtke, Address Space Sparsity and Fine Granularity,
ACM SIGOPS Oper. Syst. Rev. 29(1): 87-90 (1995)

6. Jochen Liedtke: On the realization of huge sparsely occupied and fine grained address spaces,
Berlin Institute of Technology, Oldenbourg 1996, ISBN 3-486-24185-0

7. Jochen Liedtke, Kevin Elphinstone,
Guarded Page Tables on Mips R4600 OR An Exercise in Architecture-Dependent Micro Optimization,
ACM SIGOPS Oper. Syst. Rev. 30(1): 4-15 (1996)

8. Gernot Heiser, Inside L4/MIPS: Anatomy of a High-Performance Microkernel,
UNSW School of Computer Science and Engineering, 2001

9. Patryk Zadarnowski, The Design and Implementation of an Extendible Instruction Set Simulator,
Undergraduate Thesis, School of Computer Science and Engineering University of New South Wales, 2000

10. Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, Jochen Liedtke,
The Mungi Single-Address-Space Operating System, Softw. Pract. Exp. 28(9): 901-928 (1998)

@ NTNU | S oy Reproducing System Software Research: A Case Study

18

