
Beastie In For Checkup:
Analyzing FreeBSD with LockDoc

Alexander Lochmann, Horst Schirmeier

alexander.lochmann@tu-dortmund.de
https://ess.cs.tu-dortmund.de/~al

Databases and Information Systems Group
Computer Science 6, TU Dortmund

mailto:alexander.lochmann@tu-dortmund.de

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

● Tracks locking pattern and data-structure accesses
● Recording performed under a load
● Generates documentation, and locates locking bugs
● Validate existing locking documentation

– Does the code adhere to the documentation?
● LockDoc study on Linux [3]

– Validate documentation of 5 data type
– 53 % of all observed fields accessed

consistently with their doc.

What is LockDoc?

Alexander Lochmann, Horst Schirmeier, Hendrik Borghorst, and Olaf Spinczyk. 2019. LockDoc: Trace-Based Analysis of Locking in the Linux Kernel. EuroSys‘19.
3 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

● Tracks locking pattern and data-structure accesses
● Recording performed under a load
● Generates documentation, and locates locking bugs
● Validate existing locking documentation

– Does the code adhere to the documentation?
● LockDoc study on Linux [3]

– Validate documentation of 5 data type
– 53 % of all observed fields accessed

consistently with their doc.

What is LockDoc?

Alexander Lochmann, Horst Schirmeier, Hendrik Borghorst, and Olaf Spinczyk. 2019. LockDoc: Trace-Based Analysis of Locking in the Linux Kernel. EuroSys‘19.

● Word-size variables can be accessed without locks
● If no concurrency takes place, no locks needed
● No locks if consistency does not matter

3 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

→ Real bugs?
→ Issues with LockDoc?

● Tracks locking pattern and data-structure accesses
● Recording performed under a load
● Generates documentation, and locates locking bugs
● Validate existing locking documentation

– Does the code adhere to the documentation?
● LockDoc study on Linux [3]

– Validate documentation of 5 data type
– 53 % of all observed fields accessed

consistently with their doc.

What is LockDoc?

Alexander Lochmann, Horst Schirmeier, Hendrik Borghorst, and Olaf Spinczyk. 2019. LockDoc: Trace-Based Analysis of Locking in the Linux Kernel. EuroSys‘19.
3 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

Locking Documentation in FreeBSD
/*
 * Reading or writing any of these items requires
 holding the appropriate lock.
 *
 * Lock reference:
 * c - namecache mutex
 * i - interlock
 * l - mp mnt_listmtx or freelist mutex
 * I - updated with atomics, 0->1 and 1→0
 transitions with interlock held
 * m - mount point interlock
 * p - pollinfo lock
 * u - Only a reference to the vnode is needed to
 read.
 * v - vnode lock
 *
 * Vnodes may be found on many lists. The general way
 to deal with operating
 * on a vnode that is on a list is:
 * 1) Lock the list and find the vnode.
 * 2) Lock interlock so that the vnode does not go

 away.
 * 3) Unlock the list to avoid lock order reversals.
 * 4) vget with LK_INTERLOCK and check for ENOENT, or
 * 5) Check for DOOMED if the vnode lock is not

 required.
 * 6) Perform your operation, then vput().
 */

sys/sys/vnode.h

4 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

Locking Documentation in FreeBSD
/*
 * Reading or writing any of these items requires
 holding the appropriate lock.
 *
 * Lock reference:
 * c - namecache mutex
 * i - interlock
 * l - mp mnt_listmtx or freelist mutex
 * I - updated with atomics, 0->1 and 1→0
 transitions with interlock held
 * m - mount point interlock
 * p - pollinfo lock
 * u - Only a reference to the vnode is needed to
 read.
 * v - vnode lock
 *
 * Vnodes may be found on many lists. The general way
 to deal with operating
 * on a vnode that is on a list is:
 * 1) Lock the list and find the vnode.
 * 2) Lock interlock so that the vnode does not go

 away.
 * 3) Unlock the list to avoid lock order reversals.
 * 4) vget with LK_INTERLOCK and check for ENOENT, or
 * 5) Check for DOOMED if the vnode lock is not

 required.
 * 6) Perform your operation, then vput().
 */

sys/sys/vnode.h

4 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

Locking Documentation in FreeBSD
/*
 * Reading or writing any of these items requires
 holding the appropriate lock.
 *
 * Lock reference:
 * c - namecache mutex
 * i - interlock
 * l - mp mnt_listmtx or freelist mutex
 * I - updated with atomics, 0->1 and 1→0
 transitions with interlock held
 * m - mount point interlock
 * p - pollinfo lock
 * u - Only a reference to the vnode is needed to
 read.
 * v - vnode lock
 *
 * Vnodes may be found on many lists. The general way
 to deal with operating
 * on a vnode that is on a list is:
 * 1) Lock the list and find the vnode.
 * 2) Lock interlock so that the vnode does not go

 away.
 * 3) Unlock the list to avoid lock order reversals.
 * 4) vget with LK_INTERLOCK and check for ENOENT, or
 * 5) Check for DOOMED if the vnode lock is not

 required.
 * 6) Perform your operation, then vput().
 */

sys/sys/vnode.h

4 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

Locking Documentation in FreeBSD
/*
 * Reading or writing any of these items requires
 holding the appropriate lock.
 *
 * Lock reference:
 * c - namecache mutex
 * i - interlock
 * l - mp mnt_listmtx or freelist mutex
 * I - updated with atomics, 0->1 and 1→0
 transitions with interlock held
 * m - mount point interlock
 * p - pollinfo lock
 * u - Only a reference to the vnode is needed to
 read.
 * v - vnode lock
 *
 * Vnodes may be found on many lists. The general way
 to deal with operating
 * on a vnode that is on a list is:
 * 1) Lock the list and find the vnode.
 * 2) Lock interlock so that the vnode does not go

 away.
 * 3) Unlock the list to avoid lock order reversals.
 * 4) vget with LK_INTERLOCK and check for ENOENT, or
 * 5) Check for DOOMED if the vnode lock is not

 required.
 * 6) Perform your operation, then vput().
 */

sys/sys/vnode.h

4 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

Locking Documentation in FreeBSD
/*
 * Reading or writing any of these items requires
 holding the appropriate lock.
 *
 * Lock reference:
 * c - namecache mutex
 * i - interlock
 * l - mp mnt_listmtx or freelist mutex
 * I - updated with atomics, 0->1 and 1→0
 transitions with interlock held
 * m - mount point interlock
 * p - pollinfo lock
 * u - Only a reference to the vnode is needed to
 read.
 * v - vnode lock
 *
 * Vnodes may be found on many lists. The general way
 to deal with operating
 * on a vnode that is on a list is:
 * 1) Lock the list and find the vnode.
 * 2) Lock interlock so that the vnode does not go

 away.
 * 3) Unlock the list to avoid lock order reversals.
 * 4) vget with LK_INTERLOCK and check for ENOENT, or
 * 5) Check for DOOMED if the vnode lock is not

 required.
 * 6) Perform your operation, then vput().
 */

sys/sys/vnode.h

struct vnode {
 // […]
 short v_irflag;/* i frequently read flags */
 seqc_t v_seqc; /* i modification count */
 // […]
 /*
 * Filesystem instance stuff
 */
 struct mount *v_mount; /* u [...] */
 TAILQ_ENTRY(vnode) v_nmntvnodes; /* m [...] */
 // [...]
};

4 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

Locking Documentation in FreeBSD
/*
 * Reading or writing any of these items requires
 holding the appropriate lock.
 *
 * Lock reference:
 * c - namecache mutex
 * i - interlock
 * l - mp mnt_listmtx or freelist mutex
 * I - updated with atomics, 0->1 and 1→0
 transitions with interlock held
 * m - mount point interlock
 * p - pollinfo lock
 * u - Only a reference to the vnode is needed to
 read.
 * v - vnode lock
 *
 * Vnodes may be found on many lists. The general way
 to deal with operating
 * on a vnode that is on a list is:
 * 1) Lock the list and find the vnode.
 * 2) Lock interlock so that the vnode does not go

 away.
 * 3) Unlock the list to avoid lock order reversals.
 * 4) vget with LK_INTERLOCK and check for ENOENT, or
 * 5) Check for DOOMED if the vnode lock is not

 required.
 * 6) Perform your operation, then vput().
 */

sys/sys/vnode.h

struct vnode {
 // […]
 short v_irflag;/* i frequently read flags */
 seqc_t v_seqc; /* i modification count */
 // […]
 /*
 * Filesystem instance stuff
 */
 struct mount *v_mount; /* u [...] */
 TAILQ_ENTRY(vnode) v_nmntvnodes; /* m [...] */
 // [...]
};

4 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

LockDoc – A Different Approach

FreeBSD

FAIL* / Monitoring

Workload:
fs test suite

Bochs IA-32 Emulator

Inode locking rules:
1. i_lock: i_state, i_hash
2. LRU: i_sb, i_lru
3. ...

Documented
Locking
Rules

Rule-Violation
Checker

fs.c:338
fs.c:447
inode.c:149
inode.c:180

Potential
Locking Bugs

in Code
mem READ 0x99981234
mem READ 0x99981235
LOCK 0x88432199
mem WRITE 0x8843219C
mem WRITE 0x8843219F
UNLOCK 0x88432199
mem WRITE 0x88432AA0

Trace

5 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

Instrumentation / Experiment Setup
● i386 FreeBSD 13.0 (Git commit 2134e85bc)
● Instrument FreeBSD’s Witness system [2]

– Uses same lock model as LockDoc: read lock, write lock, rw lock
– Automatically instrument all lock operations
– 8 different types recorded: hardirq, lockmgr, rm, rw, sleepable rm, sleep

mutex, spin mutex, and sx
● Using fs test suite from Linux Test Project as workload
● 26.43 hours runtime (20.22 minutes in a real vm)

6 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

FreeBSD Results (1)
● 4 data types: vnode, mount, buf, and bufobj
● bufobj is embedded in vnode

Data
Type

#R #No #Ob ✓(%) ~ (%) ✗(%)

vnode 82 9 73 72.60 27.40 0.00

mount 38 7 31 74.19 25.81 0.00

buf 80 10 70 71.43 27.14 1.43

7 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

FreeBSD Results (1)
● 4 data types: vnode, mount, buf, and bufobj
● bufobj is embedded in vnode

Data
Type

#R #No #Ob ✓(%) ~ (%) ✗(%)

vnode 82 9 73 72.60 27.40 0.00

mount 38 7 31 74.19 25.81 0.00

buf 80 10 70 71.43 27.14 1.43

Read of
buf.b_error

7 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

FreeBSD Results (1)
● 4 data types: vnode, mount, buf, and bufobj
● bufobj is embedded in vnode

Data
Type

#R #No #Ob ✓(%) ~ (%) ✗(%)

vnode 82 9 73 72.60 27.40 0.00

mount 38 7 31 74.19 25.81 0.00

buf 80 10 70 71.43 27.14 1.43

72.41 %

7 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

FreeBSD Results (1)
● 4 data types: vnode, mount, buf, and bufobj
● bufobj is embedded in vnode

Data
Type

#R #No #Ob ✓(%) ~ (%) ✗(%)

vnode 82 9 73 72.60 27.40 0.00

mount 38 7 31 74.19 25.81 0.00

buf 80 10 70 71.43 27.14 1.43

→ What about the remaining 27.59 %?

7 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

FreeBSD Results (2)
0,9≤sr<1

https://lists.freebsd.org/archives/freebsd-fs/2021-August/000371.html¹
https://github.com/freebsd/freebsd-src/blob/main/sys/ufs/ufs/inode.h#L75²

8 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

FreeBSD Results (2)
0,9≤sr<1● Inspecting tuples with relative support

– 11 tuples found
– 9 false positives

● No locks needed due to domain-specific knowledge¹
● Unguarded NULL-pointer checks
● Locking pattern not covered by LockDoc :²

a Acquire vnode lock exclusively
b Use vnode lock in shared mode + interlock

https://lists.freebsd.org/archives/freebsd-fs/2021-August/000371.html¹
https://github.com/freebsd/freebsd-src/blob/main/sys/ufs/ufs/inode.h#L75²

8 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

FreeBSD Results (2)
0,9≤sr<1● Inspecting tuples with relative support

– 11 tuples found
– 9 false positives

● No locks needed due to domain-specific knowledge¹
● Unguarded NULL-pointer checks
● Locking pattern not covered by LockDoc :²

a Acquire vnode lock exclusively
b Use vnode lock in shared mode + interlock

– 2 real bugs
● Relative support of 97.3 % and 96.2 %
● Unguarded write to buf.b_vflags and read of buf.b_blkno

https://lists.freebsd.org/archives/freebsd-fs/2021-August/000371.html¹
https://github.com/freebsd/freebsd-src/blob/main/sys/ufs/ufs/inode.h#L75²

8 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

Locking Bug 1
● Unguarded write to buf.b_vflags

https://github.com/freebsd/freebsd-src/commit/e3d675958539eee899d42438f5b46a26f3c64902

9 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

Locking Bug 2
● Unguarded read of buf.b_blkno

https://github.com/freebsd/freebsd-src/commit/5cc82c5

10 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

Locking Bug 2
● Unguarded read of buf.b_blkno

https://github.com/freebsd/freebsd-src/commit/5cc82c5

10 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

FreeBSD Results (2)

sr<0.9

 cf. sys/sys/buf.h, line 96¹

● Inspecting tuples with relative support
– 11 tuples found
– 9 false positives

● No locks needed due to domain-specific knowledge
● Unguarded NULL-pointer checks
● Pattern not covered by LockDoc:

a Acquire vnode lock exclusively
b Use vnode lock in shared mode + interlock

– 2 real bugs
● Relative support of 97.3 % and 96.2 %
● Unguarded write to buf.b_vflags and read of buf.b_blkno

● Taking samples from tuples with relative support
– buf.b_qindex and buf.b_subqueue are “Protected by the buf queue

lock“¹

0,9≤sr<1

11 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

FreeBSD Results (3)
● buf.b_qindex and buf.b_subqueue are

“Protected by the buf queue lock“¹

struct bufdomain {
struct bufqueue bd_subq[MAXCPU + 1]; /* [...] */
struct bufqueue bd_dirtyq;
struct bufqueue *bd_cleanq;
struct mtx_padalign bd_run_lock;

 // […]
};

struct bufqueue {
struct mtx_padalign bq_lock;

 // […]
};

The “buf queue lock”:

Multiple buf queues exist:
● Multiple locks exist:

– bq_subq.bq_lock
– bq_dirtyq.bq_lock

● Accesses are split
across them

 cf. sys/sys/buf.h, line 96¹

12 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

● 72.41 % of all observed fields adhere to locking
documentation

● Using sound locking documentation to search for bugs
– Found limitations of LockDoc
– Found 2 locking bugs

● Outlook
– Integrate lock classes, e.g., bq_subq.bq_lock ↔ bq_dirtyq.bq_lock

– Further investigate rules with rel. support < 90 %

Summary

Icon Licenses: CC-BY-SA 4.0 / CC0 1.0
Emoji License: CC-BY-SA 4.0 by Emoji One
FreeBSD logo – A Trademark of FreeBSD Foundation
Tux by Larry Ewing lewing@isc.tamu.edu

13 / 14

2021-09-22 Beastie In For Checkup: Analyzing FreeBSD with LockDoc

[1] Robert Love. 2010. Linux Kernel Development (3rd ed.).

[2] Marshall Kirk McKusick, George V. Neville-Neil, and Robert N. M. Watson.
2014. The Design and Implementation of the FreeBSD Operating System.

[3]Alexander Lochmann, Horst Schirmeier, Hendrik Borghorst, and Olaf
Spinczyk. 2019. LockDoc: Trace-Based Analysis of Locking in the Linux
Kernel. EuroSys‘19.

[4]https://github.com/linux-test-project/ltp

References

14 / 14

https://github.com/linux-test-project/ltp

	Slide: 1
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 4 (4)
	Slide: 4 (5)
	Slide: 4 (6)
	Slide: 5
	Slide: 6
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 9
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 11
	Slide: 12
	Slide: 13
	Slide: 14

