Inherently Deterministic Operating Systems

Fachgruppe Betriebssysteme, Herbsttreffen 2021, 2021-09-22
Stefan Reif; Timo Honig? Wolfgang Schroder-Preikschat*

*Friedrich-Alexander-Universitat Erlangen-Nlrnberg
2Ruhr-Universitat Bochum

FRIEDRICH-ALEXANDER

UNIVERSITAT _
ERLANGEN-NURNBERG

Scalability and Predictability

Scalable systems
® > 100 cores

® communicating partitions
(D system noise
(@ tail latencies

Stefan Reif et al. Inherently Deterministic Operating Systems 1

Scalability and Predictability

Scalable systems Predictable systems
® > 100 cores m = 1 core (isolated partitions)
® communicating partitions @ low performance
(D system noise (@ bad energy efficiency
(@ tail latencies (O poor utilisation

Stefan Reif et al. Inherently Deterministic Operating Systems 1

Interferences - Toy Example

>

Process

Time

Stefan Reif et al. Inherently Deterministic Operating Systems 2

Interferences - Toy Example

P x WCET (cs)

>
A
y

(P — 1) X WCET (cs) ANNNNNNNNNNNNNNNNNNNNND

Process

(P — 1) x WCET (cs)

Time

Stefan Reif et al. Inherently Deterministic Operating Systems 2

Problem Formulation

m OSs orchestrate communication

4 Interferences due to shared data structures
m 0Ss manage shared stateful data

4 Need for synchronisation
m How to build operating systems that are ...

® scalable
® predictable
® and analysable?

Stefan Reif et al. Inherently Deterministic Operating Systems 3

Approach

The IDOS Approach

» Inherently Deterministic Operating Systems (“IDOS”")
— IDOS := costs are independent of...

— ..system states & input data
— ..the number of resources
— ..concurrent operations

m Predictability & concurrency as aftertheughts first-class citizens

Stefan Reif et al. Inherently Deterministic Operating Systems 4

The IDOS Approach

» Inherently Deterministic Operating Systems (“IDOS”")
— IDOS := costs are independent of...

— ..system states & input data = single-path code
— ..the number of resources = O (1) algorithms
— ..concurrent operations = wait-freedom

m Predictability & concurrency as aftertheughts first-class citizens

Stefan Reif et al. Inherently Deterministic Operating Systems 4

The IDOS Approach

» Inherently Deterministic Operating Systems (“IDOS”")
— IDOS := costs are independent of...

— ..system states & input data = single-path code
— ..the number of resources = O (1) algorithms if possible
— ..concurrent operations = wait-freedom but no universal O (1) approach

m Predictability & concurrency as aftertheughts first-class citizens

Stefan Reif et al. Inherently Deterministic Operating Systems 4

The IDOS Approach

» Inherently Deterministic Operating Systems (“IDOS”")
— IDOS := costs are independent of...
— ..system states & input data = single-path code
— ..the number of resources = O (1) algorithms if possible
— ..concurrent operations = wait-freedom but no universal O (1) approach
m Predictability & concurrency as afterthoughts first-class citizens
(® Scalability: O (1) < O (P) for large P
() Predictability: costs are constant
(* Analysability: trivial, no overestimation, incremental
® Implementability?
(® Efficiency?

Stefan Reif et al. Inherently Deterministic Operating Systems 4

Implementability

Implementation of an IDOS prototype

m DETOX—the Deterministic Operating System

m |dentify ...
1. ..hardware requirements

(@ Constant-time multi-core hardware does not exist
= {Functional, non-functional} hardware features?
= {Necessary, desirable} hardware features?

2. ..suitable algorithms & data structures

@ Non-universality
= Concurrent O (1) operations

3. ..implementable application-level interface
= Deterministic coordination & communication

Stefan Reif et al. Inherently Deterministic Operating Systems 5

The Road to Determinism

Approach
2. Design
3. Implementation
4. Constant-Time Programming
5. Discussion
6. Evaluation

7. Conclusion

Stefan Reif et al. Inherently Deterministic Operating Systems 6

Design

Design of DETOX | Strategies

System behaviour
1. Explicit thread placement

= Deterministic control flow location
= Thread migration supported

2. Cooperative scheduling

= No involuntary preemptions
= Voluntary release of CPU supported

3. Analysable memory demand

= Constant memory demand per object
= No need for run-time allocation

4. No resource limitations
= Dynamic object creation supported

Stefan Reif et al. Inherently Deterministic Operating Systems 7

Design of DETOX | Strategies

System behaviour Design guidelines
1. Explicit thread placement m Worst-case minimisation
= Deterministic control flow location = Worst-case = average-case

= Thread migration supported
2. Cooperative scheduling

m Data access restrictions

= Data-structure partitioning
= No involuntary preemptions = Implicit ownership model
= Voluntary release of CPU supported

3. Analysable memory demand = Avoid inconsistency correction overhead
= Constant memory demand per object = Consider concurrent updates
= No need for run-time allocation

4. No resource limitations

m Redundancy elimination

m Corner case elimination

= Invariants for Fail-safe operations
= Dynamic object creation supported = Unconditional branch execution

Stefan Reif et al. Inherently Deterministic Operating Systems

Novel Concepts

m Synchronising queues m Companion cubes
= Communication & coordination = Fail-safe concurrent memory management
= Efficient wait-free signalling = Support for preallocation
m Core management threads m DETOX semaphor interface
= Thread state changes as events = Thread interaction unification
= Synchronisation simplification = Corner case elimination
m Migration-based synchronisation m Concurrent ownership model
= Mutual exclusion by thread migration = Restrict & control data access

Stefan Reif et al. Inherently Deterministic Operating Systems 8

Implementation

Implementation

® Dynamic memory management m Message-based coordination

« memory alloc, free = (MPSC) pipe create, recv, send, ...
m Dynamic thread management m Migration-based synchronisation

= thread create, exit, join,... = thread migrate, pause
m Actor-based synchronisation m Lock-based synchronisation

= actor create, run = mutex create, enter, leave

= (SPSC) reply create, set, get, ... =« condition create,wait, wake

Stefan Reif et al. Inherently Deterministic Operating Systems 9

Constant-Time Programming

Code Transformation for IDOS | Overview

High-level Algorithm

1. Start with wait-free code (with O (1) complexity)
2. Transform loops
= Discussed in literature
= Practical solution: unrolling
= Little relevance due to O (1) code
3. Transform conditions
= Discussed in literature
= Problem: atomic memory operations
= “interim & choose”
4. Avoid run-time errors

= Division by zero, invalid pointer dereference, ...
= “interim & choose” again

Stefan Reif et al. Inherently Deterministic Operating Systems 10

Code Transformation for IDOS | Conditional Statements

Conditional
Code

if (c) *a = v;

Stefan Reif et al. Inherently Deterministic Operating Systems 11

Code Transformation for IDOS | Conditional Statements

Conditional Unconditional
Code Code
TYPE _;
if (c) *a = v; =P TYPE *r = CHOOSE(c, a, &_);
*r = V;

Stefan Reif et al. Inherently Deterministic Operating Systems 11

Code Transformation for IDOS | Conditional Statements

Conditional
Code

if (c) *a = v;

if (c)

0 = XCHG(a, v1);
else

0 = Vv2;

Stefan Reif et al.

Unconditional
Code

TYPE _;
=P TYPE *r = CHOOSE(c, a, &_);
*r = V;

TYPE _ = v2;
P TYPE *r = CHOOSE(c, a, &_);
0 = XCHG(r, vi1);

Inherently Deterministic Operating Systems

11

Code Transformation for IDOS | Conditional Statements

Conditional Unconditional Selection
Code Code Implementation
TYPE _;
if (c) *a = v; =P TYPE *r = CHOOSE(c, a, &_);
*r = V;

r = CHOOSE(c, t, e);

if (c)
N . TYPE _ = v2;
el:e' XCHG(a, v1); mmmp TYPE *r = CHOOSE(c, a, &_);
o = uir 0 = XCHG(r, vi1);

Stefan Reif et al. Inherently Deterministic Operating Systems 11

Code Transformation for IDOS | Conditional Statements

Conditional Unconditional Selection
Code Code Implementation
PE _3
if (c) *a = v; =P TYPE *r = CHOOSE(c, a, &_); r=c?t:e;

r = CHOOSE(c, t, e);

if (c)

N . TYPE _ = v2;
el:e' XCHG(a, v1); mmmp TYPE *r = CHOOSE(c, a, &_);
o = uir 0 = XCHG(r, vi1);

Stefan Reif et al. Inherently Deterministic Operating Systems 11

Code Transformation for IDOS | Conditional Statements

Conditional
Code

if (c) *a = v;

if (c)

0 = XCHG(a, v1);
else

0 = Vv2;

Stefan Reif et al.

Unconditional
Code

TYPE _;

=P TYPE *r = CHOOSE(c, a, &_);
*r = V;

r = CHOOSE(c, t, e);

TYPE _ = v2;
P TYPE *r = CHOOSE(c, a, &_);
0 = XCHG(r, vi1);

Inherently Deterministic Operating Systems

Selection
Implementation

c?t: e;

(-'lc&§e) | (-'lc & t);

t+ (lc) » (e - t);

TYPE a[2] = {t, e}; r = a[!c];

11

Code Transformation for IDOS | Example

void eng_if(bool cond,
queue_t *list, chain_t *item)

{
if (cond) {
chain_t **addr = &list->tail;
chain_t +prev = XCHG(addr, item);
prev->next = item;
}
}

m Address calculation adapted to consider condition
m Unconditional execution of functional part
m Code more difficult to write & understand

Stefan Reif et al. Inherently Deterministic Operating Systems 12

Code Transformation for IDOS | Example

void eng_if(bool cond, void enq_if(bool cond,
queue_t *list, chain_t *item) queue_t *list, chain_t *item)
{ {
if (cond) { chain_t temp = { .next = &temp };
chain_t **addr = &list->tail; chain_t **addr = cond ? &list->tail
chain_t +prev = XCHG(addr, item); : Stemp.next;
prev->next = item; chain_t +prev = XCHG(addr, item);
} prev->next = item;
} }

m Address calculation adapted to consider condition
m Unconditional execution of functional part
m Code more difficult to write & understand

Stefan Reif et al. Inherently Deterministic Operating Systems 12

Code Transformation for IDOS | Example

void eng_if(bool cond, void enq_if(bool cond,
queue_t *list, chain_t *item) queue_t *list, chain_t *item)
{ {
if (cond) { chain_t temp = { .next = &temp };
chain_t **addr = &list->tail; chain_t **addr = cond ? &list->tail
chain_t +prev = XCHG(addr, item); : Stemp.next;
rev->next = item; rhain_t *prev = XCHG(addr, item);
} prev->next = item;

} }

m Address calculation adapted to consider condition
m Unconditional execution of functional part
m Code more difficult to write & understand

Stefan Reif et al. Inherently Deterministic Operating Systems 12

Discussion

Discussion of DETOX

m Efficiency
= Worst-case costs apply unconditionally
= No overly pessimistic analysis needed
® Implementation issues
= Device drivers, energy efficiency (Hardware-software interface)
= Unimplemented features (Memory Protection, ...)

Stefan Reif et al. Inherently Deterministic Operating Systems 13

Discussion of DETOX

m Efficiency
= Worst-case costs apply unconditionally
= No overly pessimistic analysis needed
® Implementation issues
= Device drivers, energy efficiency (Hardware-software interface)
= Unimplemented features (Memory Protection, ...)
m Fundamental issues
= Functional timing dependencies

— Communication (e.g., reply.get)
— Blocking operations (e.g.,, thread. join)

= Approach is not universal

Stefan Reif et al. Inherently Deterministic Operating Systems 13

Discussion of DETOX

m Efficiency
= Worst-case costs apply unconditionally
= No overly pessimistic analysis needed
® Implementation issues
= Device drivers, energy efficiency (Hardware-software interface)
= Unimplemented features (Memory Protection, ...)
m Fundamental issues
= Functional timing dependencies

— Communication (e.g., reply.get)
— Blocking operations (e.g.,, thread. join)

= Approach is not universal

m Time to say goodbye to...
= ..interrupts, traps & preemption
= ...non-O (1) scheduling strategies

Stefan Reif et al. Inherently Deterministic Operating Systems 13

Co-existence of Nondeterministic Subsystems

App || App App App|| App |/ App|| App App| App App
Lib Lib Lib Lib
Deterministic HRT SRT Best-effort
]]]]]]]]

< IDOS >

]
(CPU CPU
| #0 #1

HETEOEE

Stefan Reif et al.

Inherently Deterministic Operating Systems

14

Evaluation

Control-Flow Graphs

reply_set:

mov 0x8 (%rdi) ,%rdx
mov $0x1,%eax

mov %rsi, (krdi)
movg $0x0,-0x18(%rsp)
xchg Yrax, (%rdx)

xor %hesi,%esi

lea -0x28(%rsp) , hrex
test Yirax,%rax

lea -0x48 (%rsp) , %rdi
sete %sil

movl $0x0,-0x3c(%rsp)

sub
sub
imul
imul
mov
lea
lea
sub
sub
imul
imul

%rax,hrex
%rdx,%rdi
Y%rsi,%hrex
%rsi,%hrdi

0x10 (%rex,%rax,1) ,%r8
-0x3c (%rsp) , %rax
-0x38(%rsp) , hrex
%rdx,hrex
%r8,hrax
%rsi,’rax
%rsi,’jrex

movslq (Yrax,%r8,1),%rax

mov
movq
lea
shl
mov
add
sub
imul
mov
xchg
mov
retq

%r8,0x10(%rdi,%rdx,1)
$0x0, (%rcx,%rdx,1)
-0x30(%rsp) , hrex
$0x6, firax
%rcx,-0x30 (%rsp)
$0x603120, %rax
Yirax,hrcx
Yrsi,hrex
Yrdx,hrsi

%rsi, (hrex,%rax,1)
%rdx, (Jrsi)

= No branches, no control-flow dependency on system state or size

Stefan Reif et al.

Inherently Deterministic Operating Systems

5

Control-Flow Analysis

400 - N
B arith
— (=)} 2 bitop
N S la index
S 300 -)
o Baplain
IS 2 o
3] N I
~ u.!7 N<r
(%) & o ©o o s} N
0 o
S 200 |- 7 S 28y P e & 2
s o FER | B3 (W | | Bl [
— < N
7 L =B | ERN | S
— 100 %
H a”8%
=t | Y Bn ©o_~ ~_®
oL — Mo forr1
2 gS3d 89T BEN L R ChE
[== I_-S —~ — Iv—|
0 T T T T T T T T T T T T T
actor memory memory condvar condvar thread thread thread thread mutex mutex reply reply
run allocate free wait wake exit join migrate pause enter leave get set
= Software-level analysis is almost trivial, only in-hardware timing variance remains
Stefan Reif et al. Inherently Deterministic Operating Systems

16

Hardware Predictability

Latency [cycles]

Latency [cycles]

Stefan Reif et al.

mutex.leave

reply.set

400 T T T T T T T T
300 prn s] N\ M A M
200 |- 3
100 3
0 ! ! ! ! ! ! ! ! ! !
0O 10 20 30, 40 50 60 O 10 20 30 40 50 60
Iteration Iteration
mutex.enter reply.get
T T T T T T
2000 k —————————— | oA A A~
1000 |- 8

0
0 10 20 30 40 50 60 O 10 20 30 40 50 60

Iteration

Iteration

m Cycle-accurate RISC-V emulator
m Rocket-chip configuration

2 “small” cores

L1DS.nsets = 2

L1DS.nways = 1

L2DS.nsets = 2

L2DS.nways = 4
L2DS.replacement: TrueLRU

Bus arbitration: LowestIindexFirst
Cycle measurement at core #0
Measurement overhead = 1 cy

m Calls with debug interrupt ignored

= Some observable patterns in latency variation, some noise

Inherently Deterministic Operating Systems

17

Scalability

300

200

100

Latency [ns]

300

200

100

Latency [ns]

condv.wake

mutex.enter

mutex.leave

—+~— p50 (median) " 2
p05 ... p9 ||
16 24 32 1 8 16 24 32 16 24 32
Cores # Cores # Cores
thread.pause reply.get reply.set
e, Y .
16 24 32 1 8 16 24 32 16 24 32
Cores # Cores # Cores

= Latency independent of parallelism, except hyper-threading (amd6s)

Stefan Reif et al.

Inherently Deterministic Operating Systems

18

Conclusion

Summary & Conclusion

m Need for scalable, predictable, and
analysable systems
= Main issue: transitive interferences
= System structure: interacting
subsystems
= Focus on predictable communication
m Approach: inherently deterministic
operating systems (IDOSs)
f Scalability: O (1)
/f Analysability: almost trivial, no
overestimation, incremental
f Predictability: constant costs
X ...above ISA-level

Stefan Reif et al. Inherently Deterministic Operating Systems 19

Summary & Conclusion

m Need for scalable, predictable, and
analysable systems

= Main issue: transitive interferences

= System structure: interacting
subsystems

= Focus on predictable communication

m Approach: inherently deterministic
operating systems (IDOSs)
f Scalability: O (1)
/f Analysability: almost trivial, no
overestimation, incremental
f Predictability: constant costs
X ...above ISA-level

Stefan Reif et al.

m Co-existence with non-deterministic
subsystems

= Various means for coordination
= Constraints for functional timing
dependencies

m Determinism still has some open issues

@ constant-time hardware

® Fundamental limitations (e.g., interrupts)
(® Hardware-software interfaces

(® Suitable O (1) strategies (e.g., scheduler)
(® Concurrent O (1) algorithms

Inherently Deterministic Operating Systems

19

	Approach
	Design
	Implementation
	Constant-Time Programming
	Discussion
	Evaluation
	Conclusion

