
Inherently Deterministic Operating Systems

Fachgruppe Betriebssysteme, Herbsttreffen 2021, 2021-09-22

Stefan Reif1, Timo Hönig2, Wolfgang Schröder-Preikschat1

1Friedrich-Alexander-Universität Erlangen-Nürnberg
2Ruhr-Universität Bochum

Scalability and Predictability

Scalable systems
> 100 cores
communicating partitions

!⃝ system noise
!⃝ tail latencies

Predictable systems
≈ 1 core (isolated partitions)

!⃝ low performance
!⃝ bad energy efficiency
!⃝ poor utilisation

Stefan Reif et al. Inherently Deterministic Operating Systems 1

Scalability and Predictability

Scalable systems
> 100 cores
communicating partitions

!⃝ system noise
!⃝ tail latencies

Predictable systems
≈ 1 core (isolated partitions)

!⃝ low performance
!⃝ bad energy efficiency
!⃝ poor utilisation

Stefan Reif et al. Inherently Deterministic Operating Systems 1

Interferences – Toy Example
P
ro
ce
ss

Time

(P − 1) × WCET (cs)

P ×WCET (cs)

(P − 1) × WCET (cs)

P
ro
ce
ss

Time

(P − 1) × WCET (cs)

P ×WCET (cs)

(P − 1) × WCET (cs)

Stefan Reif et al. Inherently Deterministic Operating Systems 2

Interferences – Toy Example

P
ro
ce
ss

Time

(P − 1) × WCET (cs)

P ×WCET (cs)

(P − 1) × WCET (cs)

P
ro
ce
ss

Time

(P − 1) × WCET (cs)

P ×WCET (cs)

(P − 1) × WCET (cs)

Stefan Reif et al. Inherently Deterministic Operating Systems 2

Problem Formulation

OSs orchestrate communication
E Interferences due to shared data structures

OSs manage shared stateful data
E Need for synchronisation

How to build operating systems that are ...
?⃝ scalable
?⃝ predictable
?⃝ and analysable?

Stefan Reif et al. Inherently Deterministic Operating Systems 3

Approach

The IDOS Approach

Inherently Deterministic Operating Systems (“IDOS”)
→ IDOS := costs are independent of…

…system states & input data

⇒ single-path code

…the number of resources

⇒ O (1) algorithms if possible

…concurrent operations

⇒ wait-freedom

but no universal O (1) approach

Predictability & concurrency as afterthoughts first-class citizens

+⃝ Scalability: O (1) < O (P) for large P
+⃝ Predictability: costs are constant
+⃝ Analysability: trivial, no overestimation, incremental
?⃝ Implementability?
?⃝ Efficiency?

Stefan Reif et al. Inherently Deterministic Operating Systems 4

The IDOS Approach

Inherently Deterministic Operating Systems (“IDOS”)
→ IDOS := costs are independent of…

…system states & input data⇒ single-path code
…the number of resources⇒ O (1) algorithms

if possible

…concurrent operations⇒ wait-freedom

but no universal O (1) approach

Predictability & concurrency as afterthoughts first-class citizens

+⃝ Scalability: O (1) < O (P) for large P
+⃝ Predictability: costs are constant
+⃝ Analysability: trivial, no overestimation, incremental
?⃝ Implementability?
?⃝ Efficiency?

Stefan Reif et al. Inherently Deterministic Operating Systems 4

The IDOS Approach

Inherently Deterministic Operating Systems (“IDOS”)
→ IDOS := costs are independent of…

…system states & input data⇒ single-path code
…the number of resources⇒ O (1) algorithms if possible
…concurrent operations⇒ wait-freedom but no universal O (1) approach

Predictability & concurrency as afterthoughts first-class citizens

+⃝ Scalability: O (1) < O (P) for large P
+⃝ Predictability: costs are constant
+⃝ Analysability: trivial, no overestimation, incremental
?⃝ Implementability?
?⃝ Efficiency?

Stefan Reif et al. Inherently Deterministic Operating Systems 4

The IDOS Approach

Inherently Deterministic Operating Systems (“IDOS”)
→ IDOS := costs are independent of…

…system states & input data⇒ single-path code
…the number of resources⇒ O (1) algorithms if possible
…concurrent operations⇒ wait-freedom but no universal O (1) approach

Predictability & concurrency as afterthoughts first-class citizens
+⃝ Scalability: O (1) < O (P) for large P
+⃝ Predictability: costs are constant
+⃝ Analysability: trivial, no overestimation, incremental
?⃝ Implementability?
?⃝ Efficiency?

Stefan Reif et al. Inherently Deterministic Operating Systems 4

Implementability

Implementation of an IDOS prototype

DetOX—the Deterministic Operating System
Identify ...
1. …hardware requirements

!⃝ Constant-time multi-core hardware does not exist
⇒ {Functional, non-functional} hardware features?
⇒ {Necessary, desirable} hardware features?

2. …suitable algorithms & data structures
!⃝ Non-universality
⇒ Concurrent O (1) operations

3. …implementable application-level interface
⇒ Deterministic coordination & communication

Stefan Reif et al. Inherently Deterministic Operating Systems 5

The Road to Determinism

1. Approach

2. Design

3. Implementation

4. Constant-Time Programming

5. Discussion

6. Evaluation

7. Conclusion

Stefan Reif et al. Inherently Deterministic Operating Systems 6

Design

Design of DetOX | Strategies

System behaviour
1. Explicit thread placement

Deterministic control flow location
Thread migration supported

2. Cooperative scheduling
No involuntary preemptions
Voluntary release of CPU supported

3. Analysable memory demand
Constant memory demand per object
No need for run-time allocation

4. No resource limitations
Dynamic object creation supported

Design guidelines
Worst-case minimisation

Worst-case = average-case
Data access restrictions

Data-structure partitioning
Implicit ownership model

Redundancy elimination
Avoid inconsistency correction overhead
Consider concurrent updates

Corner case elimination
Invariants for Fail-safe operations
Unconditional branch execution

Stefan Reif et al. Inherently Deterministic Operating Systems 7

Design of DetOX | Strategies

System behaviour
1. Explicit thread placement

Deterministic control flow location
Thread migration supported

2. Cooperative scheduling
No involuntary preemptions
Voluntary release of CPU supported

3. Analysable memory demand
Constant memory demand per object
No need for run-time allocation

4. No resource limitations
Dynamic object creation supported

Design guidelines
Worst-case minimisation

Worst-case = average-case
Data access restrictions

Data-structure partitioning
Implicit ownership model

Redundancy elimination
Avoid inconsistency correction overhead
Consider concurrent updates

Corner case elimination
Invariants for Fail-safe operations
Unconditional branch execution

Stefan Reif et al. Inherently Deterministic Operating Systems 7

Novel Concepts

Synchronising queues
Communication & coordination
Efficient wait-free signalling

Core management threads
Thread state changes as events
Synchronisation simplification

Migration-based synchronisation
Mutual exclusion by thread migration

Companion cubes
Fail-safe concurrent memory management
Support for preallocation

DetOX semaphor interface
Thread interaction unification
Corner case elimination

Concurrent ownership model
Restrict & control data access

Stefan Reif et al. Inherently Deterministic Operating Systems 8

Implementation

Implementation

Dynamic memory management
memory alloc, free

Dynamic thread management
thread create, exit, join, …

Actor-based synchronisation
actor create, run
(SPSC) reply create, set, get, …

Message-based coordination
(MPSC) pipe create, recv, send, …

Migration-based synchronisation
thread migrate, pause

Lock-based synchronisation
mutex create, enter, leave
condition create, wait, wake

Stefan Reif et al. Inherently Deterministic Operating Systems 9

Constant-Time Programming

Code Transformation for IDOS | Overview

High-level Algorithm

1. Start with wait-free code (with O (1) complexity)
2. Transform loops

Discussed in literature
Practical solution: unrolling
Little relevance due to O (1) code

3. Transform conditions
Discussed in literature
Problem: atomic memory operations
“interim & choose”

4. Avoid run-time errors
Division by zero, invalid pointer dereference, …
“interim & choose” again

Stefan Reif et al. Inherently Deterministic Operating Systems 10

Code Transformation for IDOS | Conditional Statements

Conditional
Code

Unconditional
Code

Selection
Implementation

if (c) *a = v;

Stefan Reif et al. Inherently Deterministic Operating Systems 11

Code Transformation for IDOS | Conditional Statements

Conditional
Code

Unconditional
Code

Selection
Implementation

if (c) *a = v;
TYPE _;
TYPE *r = CHOOSE(c, a, &_);
*r = v;

Stefan Reif et al. Inherently Deterministic Operating Systems 11

Code Transformation for IDOS | Conditional Statements

Conditional
Code

Unconditional
Code

Selection
Implementation

if (c) *a = v;

if (c)
o = XCHG(a, v1);

else
o = v2;

TYPE _;
TYPE *r = CHOOSE(c, a, &_);
*r = v;

TYPE _ = v2;
TYPE *r = CHOOSE(c, a, &_);
o = XCHG(r, v1);

Stefan Reif et al. Inherently Deterministic Operating Systems 11

Code Transformation for IDOS | Conditional Statements

Conditional
Code

Unconditional
Code

Selection
Implementation

if (c) *a = v;

if (c)
o = XCHG(a, v1);

else
o = v2;

TYPE _;
TYPE *r = CHOOSE(c, a, &_);
*r = v;

TYPE _ = v2;
TYPE *r = CHOOSE(c, a, &_);
o = XCHG(r, v1);

r = CHOOSE(c, t, e);

Stefan Reif et al. Inherently Deterministic Operating Systems 11

Code Transformation for IDOS | Conditional Statements

Conditional
Code

Unconditional
Code

Selection
Implementation

if (c) *a = v;

if (c)
o = XCHG(a, v1);

else
o = v2;

TYPE _;
TYPE *r = CHOOSE(c, a, &_);
*r = v;

TYPE _ = v2;
TYPE *r = CHOOSE(c, a, &_);
o = XCHG(r, v1);

r = CHOOSE(c, t, e);

r = c ? t : e;
plain

Stefan Reif et al. Inherently Deterministic Operating Systems 11

Code Transformation for IDOS | Conditional Statements

Conditional
Code

Unconditional
Code

Selection
Implementation

if (c) *a = v;

if (c)
o = XCHG(a, v1);

else
o = v2;

TYPE _;
TYPE *r = CHOOSE(c, a, &_);
*r = v;

TYPE _ = v2;
TYPE *r = CHOOSE(c, a, &_);
o = XCHG(r, v1);

r = CHOOSE(c, t, e);

r = c ? t : e;

r = (-!c & e) | (-!!c & t);

r = t + (!c) * (e - t);

TYPE a[2] = {t, e}; r = a[!c];

plain

bitop

arith

index

Stefan Reif et al. Inherently Deterministic Operating Systems 11

Code Transformation for IDOS | Example

void enq_if(bool cond,
queue_t *list, chain_t *item)

{
if (cond) {

chain_t **addr = &list->tail;
chain_t *prev = XCHG(addr, item);
prev->next = item;

}
}

Address calculation adapted to consider condition
Unconditional execution of functional part
Code more difficult to write & understand

Stefan Reif et al. Inherently Deterministic Operating Systems 12

Code Transformation for IDOS | Example

void enq_if(bool cond,
queue_t *list, chain_t *item)

{
if (cond) {

chain_t **addr = &list->tail;
chain_t *prev = XCHG(addr, item);
prev->next = item;

}
}

void enq_if(bool cond,
queue_t *list, chain_t *item)

{
chain_t temp = { .next = &temp };
chain_t **addr = cond ? &list->tail

: &temp.next;
chain_t *prev = XCHG(addr, item);
prev->next = item;

}

Address calculation adapted to consider condition
Unconditional execution of functional part
Code more difficult to write & understand

Stefan Reif et al. Inherently Deterministic Operating Systems 12

Code Transformation for IDOS | Example

void enq_if(bool cond,
queue_t *list, chain_t *item)

{
if (cond) {

chain_t **addr = &list->tail;
chain_t *prev = XCHG(addr, item);
prev->next = item;

}
}

void enq_if(bool cond,
queue_t *list, chain_t *item)

{
chain_t temp = { .next = &temp };
chain_t **addr = cond ? &list->tail

: &temp.next;
chain_t *prev = XCHG(addr, item);
prev->next = item;

}

Address calculation adapted to consider condition
Unconditional execution of functional part
Code more difficult to write & understand

Stefan Reif et al. Inherently Deterministic Operating Systems 12

Discussion

Discussion of DetOX

Efficiency
Worst-case costs apply unconditionally
No overly pessimistic analysis needed

Implementation issues
Device drivers, energy efficiency (Hardware-software interface)
Unimplemented features (Memory Protection, …)

Fundamental issues
Functional timing dependencies

Communication (e.g., reply.get)
Blocking operations (e.g., thread.join)

Approach is not universal
Time to say goodbye to…

…interrupts, traps & preemption
…non-O (1) scheduling strategies
…

Stefan Reif et al. Inherently Deterministic Operating Systems 13

Discussion of DetOX

Efficiency
Worst-case costs apply unconditionally
No overly pessimistic analysis needed

Implementation issues
Device drivers, energy efficiency (Hardware-software interface)
Unimplemented features (Memory Protection, …)

Fundamental issues
Functional timing dependencies

Communication (e.g., reply.get)
Blocking operations (e.g., thread.join)

Approach is not universal

Time to say goodbye to…
…interrupts, traps & preemption
…non-O (1) scheduling strategies
…

Stefan Reif et al. Inherently Deterministic Operating Systems 13

Discussion of DetOX

Efficiency
Worst-case costs apply unconditionally
No overly pessimistic analysis needed

Implementation issues
Device drivers, energy efficiency (Hardware-software interface)
Unimplemented features (Memory Protection, …)

Fundamental issues
Functional timing dependencies

Communication (e.g., reply.get)
Blocking operations (e.g., thread.join)

Approach is not universal
Time to say goodbye to…

…interrupts, traps & preemption
…non-O (1) scheduling strategies
…

Stefan Reif et al. Inherently Deterministic Operating Systems 13

Co-existence of Nondeterministic Subsystems

det

Lib
Deterministic

App App

hrt

Lib
HRT

App

srt

Lib
SRT

App App App App

be

Lib
Best-effort

App App App

< IDOS >

CPU
#0

CPU
#1

CPU
#2

CPU
#3

CPU
#4

CPU
#5

CPU
#6

CPU
#7

Stefan Reif et al. Inherently Deterministic Operating Systems 14

Evaluation

Control-Flow Graphs

reply_set:

mov 0x8(%rdi),%rdx

mov $0x1,%eax

mov %rsi,(%rdi)

movq $0x0,-0x18(%rsp)

xchg %rax,(%rdx)

xor %esi,%esi

lea -0x28(%rsp),%rcx

test %rax,%rax

lea -0x48(%rsp),%rdi

sete %sil

movl $0x0,-0x3c(%rsp)

sub %rax,%rcx

sub %rdx,%rdi

imul %rsi,%rcx

imul %rsi,%rdi

mov 0x10(%rcx,%rax,1),%r8

lea -0x3c(%rsp),%rax

lea -0x38(%rsp),%rcx

sub %rdx,%rcx

sub %r8,%rax

imul %rsi,%rax

imul %rsi,%rcx

movslq (%rax,%r8,1),%rax

mov %r8,0x10(%rdi,%rdx,1)

movq $0x0,(%rcx,%rdx,1)

lea -0x30(%rsp),%rcx

shl $0x6,%rax

mov %rcx,-0x30(%rsp)

add $0x603120,%rax

sub %rax,%rcx

imul %rsi,%rcx

mov %rdx,%rsi

xchg %rsi,(%rcx,%rax,1)

mov %rdx,(%rsi)

retq

⇒ No branches, no control-flow dependency on system state or size

Stefan Reif et al. Inherently Deterministic Operating Systems 15

Control-Flow Analysis

actor
run

memory
allocate

memory
free

condvar
wait

condvar
wake

thread
exit

thread
join

thread
migrate

thread
pause

mutex
enter

mutex
leave

reply
get

reply
set

0

100

200

300

400

6
2

3
0

1
9

3
0
9

3
8

1
5
4

1
9
0

1
6
2

1
6
1

1
5
9

3
4

1
5
8

3
5

8
4

4
0

3
0

3
7
7

5
3

1
8
8

2
3
5

1
9
6

1
9
5

1
9
3

4
6

1
9
2

4
7

6
8

3
4

2
8

3
1
9

4
3

1
5
9

2
0
4

1
6
7

1
6
6

1
6
4

3
8

1
6
3

3
9

1
1
–
3
7

1
4
–
2
1

1
0
–
1
1

1
9
5
–
2
0
9

1
3
–
1
9

9
7
–
1
0
4

1
2
3
–
1
3
1

1
0
5
–
1
1
2

1
0
4
–
1
1
1

1
0
2
–
1
0
9

1
3
–
1
7

1
0
1
–
1
0
8

1
4
–
1
8#

In
st
ru
ct
io
n
s
(a
m
d
64
)

actor
run

memory
allocate

memory
free

condvar
wait

condvar
wake

thread
exit

thread
join

thread
migrate

thread
pause

mutex
enter

mutex
leave

reply
get

reply
set

0

100

200

300

400

arith

bitop

index

plain

⇒ Software-level analysis is almost trivial, only in-hardware timing variance remains

Stefan Reif et al. Inherently Deterministic Operating Systems 16

Hardware Predictability

0 10 20 30 40 50 60
0

100

200

300

400

Iteration

L
a
te
n
cy

[c
yc
le
s]

mutex.leave

0 10 20 30 40 50 60
0

1 000

2 000

Iteration

L
a
te
n
cy

[c
yc
le
s]

mutex.enter

0 10 20 30 40 50 60
Iteration

reply.set

0 10 20 30 40 50 60
Iteration

reply.get

Cycle-accurate RISC-V emulator
Rocket-chip configuration

2 “small” cores
L1D$.nsets = 2
L1D$.nways = 1
L2D$.nsets = 2
L2D$.nways = 4
L2D$.replacement: TrueLRU
Bus arbitration: LowestIndexFirst
Cycle measurement at core # 0
Measurement overhead = 1 cy

Calls with debug interrupt ignored

⇒ Some observable patterns in latency variation, some noise

Stefan Reif et al. Inherently Deterministic Operating Systems 17

Scalability

1 8 16 24 32
0

100

200

300

#Cores

L
a
te
n
cy

[n
s]

condv.wake

p50 (median)

p05 . . . p95

1 8 16 24 32
0

100

200

300

#Cores

L
a
te
n
cy

[n
s]

thread.pause

1 8 16 24 32
#Cores

mutex.enter

1 8 16 24 32
#Cores

mutex.leave

1 8 16 24 32
#Cores

reply.get

1 8 16 24 32
#Cores

reply.set

⇒ Latency independent of parallelism, except hyper-threading (amd64)

Stefan Reif et al. Inherently Deterministic Operating Systems 18

Conclusion

Summary & Conclusion

Need for scalable, predictable, and
analysable systems

Main issue: transitive interferences
System structure: interacting
subsystems
Focus on predictable communication

Approach: inherently deterministic
operating systems (IDOSs)

3⃝ Scalability: O (1)
3⃝ Analysability: almost trivial, no
overestimation, incremental

3⃝ Predictability: constant costs
7⃝ …above ISA-level

Co-existence with non-deterministic
subsystems

Various means for coordination
Constraints for functional timing
dependencies

Determinism still has some open issues
7⃝ constant-time hardware
7⃝ Fundamental limitations (e.g., interrupts)
?⃝ Hardware-software interfaces
?⃝ Suitable O (1) strategies (e.g., scheduler)
?⃝ Concurrent O (1) algorithms

Stefan Reif et al. Inherently Deterministic Operating Systems 19

Summary & Conclusion

Need for scalable, predictable, and
analysable systems

Main issue: transitive interferences
System structure: interacting
subsystems
Focus on predictable communication

Approach: inherently deterministic
operating systems (IDOSs)

3⃝ Scalability: O (1)
3⃝ Analysability: almost trivial, no
overestimation, incremental

3⃝ Predictability: constant costs
7⃝ …above ISA-level

Co-existence with non-deterministic
subsystems

Various means for coordination
Constraints for functional timing
dependencies

Determinism still has some open issues
7⃝ constant-time hardware
7⃝ Fundamental limitations (e.g., interrupts)
?⃝ Hardware-software interfaces
?⃝ Suitable O (1) strategies (e.g., scheduler)
?⃝ Concurrent O (1) algorithms

Stefan Reif et al. Inherently Deterministic Operating Systems 19

	Approach
	Design
	Implementation
	Constant-Time Programming
	Discussion
	Evaluation
	Conclusion

