l? { § Leibniz
t O Z B Universitat
tog' 4 | Hannover

Dynamic Context-Based Code Elimination

Florian Rommel Daniel Lohmann

Leibniz Universitdt Hannover

2021-09-22

Binary Tailoring and Debloating

Remove unnecessary code from binaries

Why?

— Smaller binaries
— Reduced attack surface

Well researched.
Can we go further?

2021-09-22 Dynamic Context-Based Code Elimination — Florian Rommel

0x16488

N
=0 =

I ==

]
o, s g
h Dﬂé
Dﬁjﬁ T

0x5a9d4

Executions

|| unused
[]1-10
[] <100
7] <1000

B < 10000
max 7 068

Fig. 1. Use of musL
libc [16] functions
by vsFTPD [15].

f} { § Leibniz
it 0 Z] Universitdt
tog: 4§ Hannover

A. Ziegler et al. 2019
ACM Transactions on Embedded
Computing Systems

Context-Based Code Elimination

Example: Redis (In-Memory Database)

;1

main thread 0 threads

Communicate with

Connected clients
Idea:

_ Elimination of these functions
~82 9% of the functions are But only in 10 threads

not needed in 10 threads
(excl. libraries)

2021-09-22 Dynamic Context-Based Code Elimination — Florian Rommel 3-14

Context-Based Code Elimination

How can we eliminate code on the basis of threads?

Dynamic Context-based Code Eliminiation
via Address-Space Views

Address-space views:

— Synchronized clones of the process's address space
that differ can differ areas

— Threads can move between Views

— Implemented in the Linux Kernel

2021-09-22 Dynamic Context-Based Code Elimination — Florian Rommel 4-14

Address-Space Views

address Original AS create() > New AS View
space
et T text o
unshare() = Copy-On-Write Mapping e __—climinated
Al R E T PP PSP EE L data
& Shared Mapping &t
stack stack

2021-09-22 Dynamic Context-Based Code Elimination — Florian Rommel 5-14

Address-Space Views

delete() .
address Original AS create() v New AS View
Space
text TTTTmeeeeemee text o
unshare() — Copy-On-Write Mapping pem——— eliminated
data T ieeemm T data
& Shared Mapping &
N e stack
threads ? migrate() R ? ?
th2 th1 th3

2021-09-22 Dynamic Context-Based Code Elimination — Florian Rommel 6-14

Implementation

m Compiler Plugin (GCC)

= Captures static call-graph information
= Embeds information into the binary object (metadata section)

m Runtime Library
= Consolidates metadata
= Allows elimination of unused functions — replaces code with Invalid Opcodes

API:
void cte_init(void);

void cte_eliminate(void *keep[], long keepc, void *nokeep[], long nokeepc);
void cte_eliminate_self(void);

2021-09-22 Dynamic Context-Based Code Elimination — Florian Rommel

Implementation

main

Pthread_create‘_,_.-"'/
fnl fn2 fn3
fn4 fn5 fnoé fn7 fn8
\ 4
fno fnlo
v/v
fnll fnil2

2021-09-22 Dynamic Context-Based Code Elimination — Florian Rommel 8-14

Implementation

maih

pthread_create
e i\\\‘_______\\\‘ long view = view_create();
view_migrate(view);
A2 A3

void *keep[] = { fnl };

cte_eliminate(keep, 1, NULL, 0);
fn 5 né frt fr8
v l
9 FA10

fnl
4 fn
n
v/v
fnll fnl2

2021-09-22 Dynamic Context-Based Code Elimination — Florian Rommel 9-14

Implementation

pthread_create
x,x”' 'i\\\s_______\\\‘ long view = view_create();
fnlA’ view_migrate(view);
void *keep[] = { fnl };
"//A\\5¥ void *nokeep[] = { fn9 };
fn4 fn5 cte_eliminate(keep, 1, nokeep, 1);

2021-09-22 Dynamic Context-Based Code Elimination — Florian Rommel 10 - 14

Example: Redis 10 Threads

— Eliminate unnecessary functions for |0 threads

m Functions eliminated

= while preserving all "address-taken” functions:
Removed 1738 of 2717 functions (~72 9% code size [bytes])

= While preserved only hand-selected "address-taken” functions:
Removed 2227 of 2717 functions (~82 9% code size [bytes])

m No measurable performance impact

2021-09-22 Dynamic Context-Based Code Elimination — Florian Rommel 11 -14

. f‘;'l Lei_bniz_"
Alternatives Jap] | D

m Separate processes [fork
= Address spaces diverge
= No more thread-like communication between contexts
= Switching between contexts is not possible

m Intel Protection Keys
= Available since Skylake in server CPUs
= 16 protection domains per process
= Restricted to page granularity

2021-09-22 Dynamic Context-Based Code Elimination — Florian Rommel 12 -14

f;’l Lei_bniz_)
Future Work

m Improve call-graph analysis

m Context-based elimination for data

m More areas of application (browser, web services)

2021-09-22 Dynamic Context-Based Code Elimination — Florian Rommel 13-14

Summary

Dynamic Context-based Code Eliminiation

m Goal:
Dynamically eliminate unreachable code on the basis of user-defined contexts.

m Approach:
Use address space views to give each context its own view of the text segment.

Thank you for your attention.

14-14

2021-09-22 Dynamic Context-Based Code Elimination — Florian Rommel

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14

