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Binary Tailoring and Debloating

Remove unnecessary code from binaries

Why?

— Smaller binaries
— Reduced attack surface

Well researched.
Can we go further?
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Context-Based Code Elimination

Example: Redis (In-Memory Database)

;1

main thread 0 threads

Communicate with

Connected clients
Idea:

_ Elimination of these functions
~82 9% of the functions are But only in 10 threads

not needed in 10 threads
(excl. libraries)
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Context-Based Code Elimination

How can we eliminate code on the basis of threads?

Dynamic Context-based Code Eliminiation
via Address-Space Views

Address-space views:

— Synchronized clones of the process's address space
that differ can differ areas

— Threads can move between Views

— Implemented in the Linux Kernel
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Address-Space Views
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Address-Space Views
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Implementation

m Compiler Plugin (GCC)

= Captures static call-graph information
= Embeds information into the binary object (metadata section)

m Runtime Library
= Consolidates metadata
= Allows elimination of unused functions — replaces code with Invalid Opcodes

API:
void cte_init(void);

void cte_eliminate(void *keep[], long keepc, void *nokeep[], long nokeepc);
void cte_eliminate_self(void);
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Implementation

main

Pthread_create‘_,_.-"'/
fnl fn2 fn3
fn4 fn5 fnoé fn7 fn8
\ 4
fno fnlo
v/v
fnll fnil2
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Implementation

maih

pthread_create
e i\\\‘_______\\\‘ long view = view_create();
view_migrate(view);
A2 A3

void *keep[] = { fnl };

cte_eliminate(keep, 1, NULL, 0);
fn 5 né frt fr8
v l
9 FA10

fnl
4 fn
n
v/v
fnll fnl2
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Implementation

pthread_create
x,x”' 'i\\\s_______\\\‘ long view = view_create();
fnlA’ view_migrate(view);
void *keep[] = { fnl };
"//A\\5¥ void *nokeep[] = { fn9 };
fn4 fn5 cte_eliminate(keep, 1, nokeep, 1);
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Example: Redis 10 Threads

— Eliminate unnecessary functions for |0 threads

m Functions eliminated

= while preserving all "address-taken” functions:
Removed 1738 of 2717 functions (~72 9% code size [bytes])

= While preserved only hand-selected "address-taken” functions:
Removed 2227 of 2717 functions (~82 9% code size [bytes])

m No measurable performance impact
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Alternatives Jap] | D

m Separate processes [ fork
= Address spaces diverge
= No more thread-like communication between contexts
= Switching between contexts is not possible

m Intel Protection Keys
= Available since Skylake in server CPUs
= 16 protection domains per process
= Restricted to page granularity
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Future Work

m Improve call-graph analysis

m Context-based elimination for data

m More areas of application (browser, web services)
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Summary

Dynamic Context-based Code Eliminiation

m Goal:
Dynamically eliminate unreachable code on the basis of user-defined contexts.

m Approach:
Use address space views to give each context its own view of the text segment.

Thank you for your attention.
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