
2021-09-22

Dynamic Context-Based Code Elimination

Florian Rommel Daniel Lohmann

Leibniz Universität Hannover

2 – 14Dynamic Context-Based Code Elimination — Florian Rommel2021-09-22

Binary Tailoring and Debloating

Remove unnecessary code from binaries

Why?

 → Smaller binaries
 → Reduced attack surface

Well researched.

Can we go further?

A. Ziegler et al. 2019
ACM Transactions on Embedded
Computing Systems

3 – 14Dynamic Context-Based Code Elimination — Florian Rommel2021-09-22

Context-Based Code Elimination

Example: Redis (In-Memory Database)

main thread IO threads
...

Communicate with
Connected clients

~82 % of the functions are
not needed in IO threads
(excl. libraries)

Idea:
Elimination of these functions
But only in IO threads

4 – 14Dynamic Context-Based Code Elimination — Florian Rommel2021-09-22

Context-Based Code Elimination

How can we eliminate code on the basis of threads?

Dynamic Context-based Code Eliminiation
via Address-Space Views

Address-space views:
 → Synchronized clones of the process’s address space

 that differ can differ areas
 → Threads can move between Views
 → Implemented in the Linux Kernel

5 – 14Dynamic Context-Based Code Elimination — Florian Rommel2021-09-22

Shared Mapping

Address-Space Views

Copy-On-Write Mapping

Shared Mapping

text

data
&

stack

Original AS New AS Viewcreate()

text

data
&

stack

address
space

unshare()
eliminated

6 – 14Dynamic Context-Based Code Elimination — Florian Rommel2021-09-22

Address-Space Views

Copy-On-Write Mapping

Shared Mapping

text

data
&

stack

Original AS New AS View

th2

create()

text

data
&

stack

migrate()

address
space

threads

delete()

th1 th3

unshare()
eliminated

7 – 14Dynamic Context-Based Code Elimination — Florian Rommel2021-09-22

Implementation

 Compiler Plugin (GCC)
 Captures static call-graph information
 Embeds information into the binary object (metadata section)

 Runtime Library
 Consolidates metadata
 Allows elimination of unused functions replaces code with Invalid Opcodes→

API:
void cte_init(void);

void cte_eliminate(void *keep[], long keepc, void *nokeep[], long nokeepc);

void cte_eliminate_self(void);

8 – 14Dynamic Context-Based Code Elimination — Florian Rommel2021-09-22

Implementation

main

fn1 fn2 fn3

fn5fn4 fn6

fn10

fn8fn7

fn9

fn12fn11

pthread_create

9 – 14Dynamic Context-Based Code Elimination — Florian Rommel2021-09-22

Implementation

main

fn1 fn2 fn3

fn5fn4 fn6

fn10

fn8fn7

fn9

fn12fn11

void *keep[] = { fn1 };

cte_eliminate(keep, 1, NULL, 0);

long view = view_create();

view_migrate(view);

pthread_create

10 – 14Dynamic Context-Based Code Elimination — Florian Rommel2021-09-22

Implementation

main

fn1 fn2 fn3

fn5fn4 fn6

fn10

fn8fn7

fn9

fn12fn11

void *keep[] = { fn1 };

void *nokeep[] = { fn9 };

cte_eliminate(keep, 1, nokeep, 1);

long view = view_create();

view_migrate(view);

pthread_create

fn13

function
pointer

fn13

fn3

fn8fn7

address taken

11 – 14Dynamic Context-Based Code Elimination — Florian Rommel2021-09-22

Example: Redis IO Threads

 → Eliminate unnecessary functions for IO threads

 Functions eliminated

 while preserving all “address-taken” functions:
Removed 1738 of 2717 functions (~72 % code size [bytes])

 While preserved only hand-selected “address-taken” functions:
Removed 2227 of 2717 functions (~82 % code size [bytes])

 No measurable performance impact

12 – 14Dynamic Context-Based Code Elimination — Florian Rommel2021-09-22

Alternatives

 Separate processes / fork
 Address spaces diverge
 No more thread-like communication between contexts
 Switching between contexts is not possible

 Intel Protection Keys
 Available since Skylake in server CPUs
 16 protection domains per process
 Restricted to page granularity

13 – 14Dynamic Context-Based Code Elimination — Florian Rommel2021-09-22

Future Work

 Improve call-graph analysis

 Context-based elimination for data

 More areas of application (browser, web services)

14 – 14Dynamic Context-Based Code Elimination — Florian Rommel2021-09-22

Summary

Dynamic Context-based Code Eliminiation

 Goal:
Dynamically eliminate unreachable code on the basis of user-defined contexts.

 Approach:
Use address space views to give each context its own view of the text segment.

Thank you for your attention.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14

