
CLoF:
A Compositional Lock Framework for Multi-level NUMA Systems

Rafael Chehab Diogo BehrensAntonio Paolillo Ming Fu Hermann Härtig Haibo Chen

March 18th, 2022

1

Concurrency is Everywhere

Modern operating systems, databases & applications resort to
multi-core concurrency to achieve high performance.

2

Concurrency is Everywhere

Modern operating systems, databases & applications resort to
multi-core concurrency to achieve high performance.

Multi-core concurrency:
One of its most important tasks is to synchronize

access to shared variables
3

Linux spinlock evolution

TTAS
3 atomics
no fairness

ticketlock
4 atomics
fairness

qspinlock
26 atomics
fairness
fast-path

CNA lock
46 atomics
fairness
fast-path
NUMA-awareness

1990s

2008

2015

2022?

4

Linux spinlock evolution

TTAS
3 atomics
no fairness

ticketlock
4 atomics
fairness

qspinlock
26 atomics
fairness
fast-path

CNA lock
46 atomics
fairness
fast-path
NUMA-awareness

Multi-processor System

1990s

2008

2015

2022?

5

Linux spinlock evolution

TTAS
3 atomics
no fairness

ticketlock
4 atomics
fairness

qspinlock
26 atomics
fairness
fast-path

CNA lock
46 atomics
fairness
fast-path
NUMA-awareness

Multi-processor System

Many-core NUMA system

1990s

2008

2015

2022?

6

Deep-hierarchy NUMA systems

7

fast

Deep-hierarchy NUMA systems

8

fast

slower

Deep-hierarchy NUMA systems

9

fast

slower

even
slower

Deep-hierarchy NUMA systems

10

fast

slower

even
slower

slowest

Deep-hierarchy NUMA systems

11

• HMCS creates a hierarchy of MCS locks

• Arbitrary number of levels

fast

slower

even
slower

slowest

Deep-hierarchy NUMA systems Multi-level NUMA-aware Locks

12

60%

fast

slower

even
slower

slowest

Deep-hierarchy NUMA systems Multi-level NUMA-aware Locks

13

60%

fast

slower

even
slower

slowest

Deep-hierarchy NUMA systems Multi-level NUMA-aware Locks

Multi-Level:
Utilizing the full deep-hierarchy in a

lock improves performance

14

MCS

MCS

MCS

MCS

Level-heterogeneity

?

?

? ?
15

MCS

MCS

MCS

MCS

Level-heterogeneity Experiment - Heterogeneity

?

?

? ?
16

x86 server – execution of classical locks in isolation

MCS

MCS

MCS

MCS

Level-heterogeneity Experiment - Heterogeneity

?

?

? ?

HT 71 HT 93

17

x86 server – execution of classical locks in isolation

MCS

MCS

MCS

MCS

Level-heterogeneity Experiment - Heterogeneity

?

?

?

HT 71

ticketlock
18

x86 server – execution of classical locks in isolation

MCS

MCS

MCS

MCS

Level-heterogeneity Experiment - Heterogeneity

?

?

?

HT 71

ticketlock

HT …

HT 53

HT 50

19

x86 server – execution of classical locks in isolation

MCS

MCS

MCS

MCS

Level-heterogeneity Experiment - Heterogeneity

?

?

HT 71

ticketlock

HT …

HT 53

HT 50

20

x86 server – execution of classical locks in isolation

MCS

MCS

MCS

MCS

Level-heterogeneity Experiment - Heterogeneity

?

?

HT 71

ticketlock

HT …

HT 53

HT 50

Level-heterogeneity:
For different levels,

the best lock may differ

21

x86 server – execution of classical locks in isolation

Experiment - Heterogeneity

Level-heterogeneity:
For different levels,

the best lock may differ

Experiment – Platform Optimization

22

x86 server – execution of classical locks in isolationArm server – execution of classical locks in isolation

Experiment - Heterogeneity

Level-heterogeneity:
For different levels,

the best lock may differ

Experiment – Platform Optimization

23

x86 server – execution of classical locks in isolationArm server – execution of classical locks in isolation

Experiment - Heterogeneity

Level-heterogeneity:
For different levels,

the best lock may differ

Experiment – Platform Optimization

24

x86 server – execution of classical locks in isolationArm server – execution of classical locks in isolation

Experiment - Heterogeneity

Level-heterogeneity:
For different levels,

the best lock may differ

Experiment – Platform Optimization

Platform Optimization:
For different platforms,

the best lock for a level may differ

25

x86 server – execution of classical locks in isolationArm server – execution of classical locks in isolation

Experiment - Heterogeneity

Level-heterogeneity:
For different levels,

the best lock may differ

Experiment – Platform Optimization

Platform Optimization:
For different platforms,

the best lock for a level may differ

So, how does this affects our lock
design?

26

x86 server – execution of classical locks in isolationArm server – execution of classical locks in isolation

Our Desired NUMA-aware lock

27

• Multi-Level

• Level-Heterogeneous

• Configurability for Platform Optimization

Our Desired NUMA-aware lock

• Showing lock correctness is

challenging

• Weak Memory Models (WMMs) make it

even more complicated

28

• Multi-Level

• Level-Heterogeneous

• Configurability for Platform Optimization

Our contribution: CLoF

We propose CLoF, a framework to generate locks for a target platform:

• that support an arbitrary hierarchy;

• for each level, the lock implementation may be different;

• that are correct-by-construction on Weak Memory Models.

29

Our contribution: CLoF

We propose CLoF, a framework to generate locks for a target platform:

• that support an arbitrary hierarchy;

• for each level, the lock implementation may be different;

• that are correct-by-construction on Weak Memory Models.

30

NUMA-aware locks Correctness on
WMMs

Level heterogeneity &
Architecture optimization

Multi-Level

lock cohorting PPPoPP’12

HMCS PPoPP’15
1

CNA lock EuroSys’19

ShflLock SOSP’19

CLoF SOSP’21

1Insufficient barriers, fixed in Oberhauser et al., Verifying and Optimizing the HMCS Lock for Arm Servers, NETYS’2021

Discover Memory
Hierarchy

CLoF Workflow

31

Discover Memory
Hierarchy

Verify correctness on
WMMs

CLoF Workflow

32
mcs

tkt clh

Discover Memory
Hierarchy

Verify correctness on
WMMs

CLoF Workflow

33

CLoF
Lock

Generator

mcs

tkt clh

Discover Memory
Hierarchy

Verify correctness on
WMMs

hundreds of

lock
combinations

CLoF Workflow

34

CLoF
Lock

Generator

Run
scripted

benchmark

mcs

tkt clh

Discover Memory
Hierarchy

Verify correctness on
WMMs

hundreds of

lock
combinations

CLoF Workflow

35

CLoF
Lock

Generator

Run
scripted

benchmark

mcs

tkt clh

Select Best Lock

Agenda

• How to figure out the hierarchy we need to use?

• How does our CLoF Lock Generator works?

• How do we know it is correct?

• How do we pick the best lock for the target platform?

36

Agenda

• How to figure out the hierarchy we need to use?

• How does our CLoF Lock Generator works?

• How do we know it is correct?

• How do we pick the best lock for the target platform?

37

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

38

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

Is this the full hierarchy?
39

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

40

Experimental Discovery
• 2 threads alternately increment a

shared counter
• Darker colors => Higher throughput

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

41

Experimental Discovery
• 2 threads alternately increment a

shared counter
• Darker colors => Higher throughput

Core 4

Core 5

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

42

Experimental Discovery
• 2 threads alternately increment a

shared counter
• Darker colors => Higher throughput

Core 4

Core 5

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

43

Experimental Discovery
• 2 threads alternately increment a

shared counter
• Darker colors => Higher throughput

Core 4

Core 30

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

44

Experimental Discovery
• 2 threads alternately increment a

shared counter
• Darker colors => Higher throughput

Core 4

Core 30

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

45

Experimental Discovery
• 2 threads alternately increment a

shared counter
• Darker colors => Higher throughput

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

46

Experimental Discovery
• 2 threads alternately increment a

shared counter
• Darker colors => Higher throughput

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

47

Experimental Discovery
• 2 threads alternately increment a

shared counter
• Darker colors => Higher throughput

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

48

Experimental Discovery
• 2 threads alternately increment a

shared counter
• Darker colors => Higher throughput

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

49

Experimental Discovery
• 2 threads alternately increment a

shared counter
• Darker colors => Higher throughput

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

50

Experimental Discovery
• 2 threads alternately increment a

shared counter
• Darker colors => Higher throughput

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

51

Experimental Discovery
• 2 threads alternately increment a

shared counter
• Darker colors => Higher throughput

?

• Not shown by lscpu/lstopo

• Information is shown in processors’

datasheet

• Not efficient

• Remained unstudied and unused

• HMCS<4> includes hidden

cache group level

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

52

Agenda

• How to figure out the hierarchy we need to use?

• How does our CLoF Lock Generator works?

• How do we know it is correct?

• How do we pick the best lock for the target platform?

53

Compile-Time Syntactic RecursionTwo NUMA node example

CLoF Lock Generator

54

NUMA 1
Core 2

Core 3

NUMA 0
Core 0

Core 1

Compile-Time Syntactic RecursionTwo NUMA node example

CLoF Lock Generator

55

l0

NUMA 1
Core 2

Core 3

NUMA 0
Core 0

Core 1

Core 2Core 0

Compile-Time Syntactic RecursionTwo NUMA node example

CLoF Lock Generator

56

l0

NUMA 1
Core 2

Core 3

NUMA 0
Core 0

Core 1

Compile-Time Syntactic RecursionTwo NUMA node example

CLoF Lock Generator

57

l0

l1 l2

NUMA 1
Core 2

Core 3

NUMA 0
Core 0

Core 1Core 1

Core 0

Compile-Time Syntactic RecursionTwo NUMA node example

CLoF Lock Generator

58

l0

l1 l2

NUMA 1
Core 2

Core 3

NUMA 0
Core 0

Core 1

Core 2Core 0

Compile-Time Syntactic RecursionTwo NUMA node example

CLoF Lock Generator

59

l0

l1 l2

NUMA 1
Core 2

Core 3

NUMA 0
Core 0

Core 1

Compile-Time Syntactic RecursionTwo NUMA node example

CLoF Lock Generator

60

l0

l1 l2

Simplified Code

CLoF(l, L)::acquire =
acquire l;
if(¬already has L)

acquire L;

CLoF(l, L)::release =
if(someone is waiting and

others won’t starve)
release l;

else
release L;
release l;

Compile-Time Syntactic Recursion

CLoF Lock Generator

61

l0

l1 l2

Simplified Code

CLoF(l, L)::acquire =
acquire l;
if(¬already has L)

acquire L;

CLoF(l, L)::release =
if(someone is waiting and

others won’t starve)
release l;

else
release L;
release l;

Compile-Time Syntactic Recursion

CLoF Lock Generator

62

l0

l1 l2

Simplified Code

CLoF(l, L)::acquire =
acquire l;
if(¬already has L)

acquire L;

CLoF(l, L)::release =
if(someone is waiting and

others won’t starve)
release l;

else
release L;
release l;

L0

Compile-Time Syntactic Recursion

CLoF Lock Generator

63

l0

l1 l2

Simplified Code

CLoF(l, L)::acquire =
acquire l;
if(¬already has L)

acquire L;

CLoF(l, L)::release =
if(someone is waiting and

others won’t starve)
release l;

else
release L;
release l;

L0

Compile-Time Syntactic Recursion

CLoF Lock Generator

64

l0

l1 l2

Simplified Code

CLoF(l, L)::acquire =
acquire l;
if(¬already has L)

acquire L;

CLoF(l, L)::release =
if(someone is waiting and

others won’t starve)
release l;

else
release L;
release l;

L0

l3 l4 l5 l6

Compile-Time Syntactic Recursion

CLoF Lock Generator

65

l0

l1 l2

Simplified Code

CLoF(l, L)::acquire =
acquire l;
if(¬already has L)

acquire L;

CLoF(l, L)::release =
if(someone is waiting and

others won’t starve)
release l;

else
release L;
release l;

L1

l3 l4 l5 l6

Compile-Time Syntactic Recursion Lock Abstraction

CLoF Lock Generator

66

l0

l1 l2

Simplified Code

CLoF(l, L)::acquire =
acquire l;
if(¬already has L)

acquire L;

CLoF(l, L)::release =
if(someone is waiting and

others won’t starve)
release l;

else
release L;
release l;

L1

l3 l4 l5 l6

Compile-Time Syntactic Recursion Lock Abstraction

CLoF Lock Generator

67

l0

l1 l2

CLoF(l, L)::acquire =
acquire l;
if(¬already has L)

acquire L;

CLoF(l, L)::release =
if(someone is waiting and

others won’t starve)
release l;

else
release L;
release l;

L1

l3 l4 l5 l6

Compile-Time Syntactic Recursion Lock Abstraction

CLoF Lock Generator

68

l0

l1 l2

CLoF(l, L)::acquire =
acquire l;
if(¬already has L)

acquire L;

CLoF(l, L)::release =
if(someone is waiting and

others won’t starve)
release l;

else
release L;
release l;

L1

l3 l4 l5 l6

l is only accessed
through
acquire/release
calls

Agenda

• How to figure out the hierarchy we need to use?

• How does our CLoF Lock Generator works?

• How do we know it is correct?

• How do we pick the best lock for the target platform?

69

CLoF Correctness

70

Model Checker
for WMM

CLoF Correctness

71

Model Checker
for WMM

Times out
after 12 hours

CLoF Correctness

72

Model Checker
for WMM

Times out
after 12 hours

Inductive Approach

Base Step Inductive Step

CLoF Correctness

73

Model Checker
for WMM

Times out
after 12 hours

Inductive Approach

Base Step Inductive Step

mcstkt clh

Model Checker2

for WMM

2Oberhauser et al., VSync: push-button verification and optimization for synchronization primitives on weak memory models, ASPLOS’2021

CLoF Correctness

74

Model Checker
for WMM

Times out
after 12 hours

Inductive Approach

Base Step Inductive Step

mcstkt clh

Model Checker2

for WMM

< 10 minutes

2Oberhauser et al., VSync: push-button verification and optimization for synchronization primitives on weak memory models, ASPLOS’2021

CLoF Correctness

75

Model Checker
for WMM

Times out
after 12 hours

Inductive Approach

Base Step Inductive Step

mcstkt clh

Model Checker2

for WMM

< 10 minutes

Model Checker2

for WMM

L0

l1 l2

2Oberhauser et al., VSync: push-button verification and optimization for synchronization primitives on weak memory models, ASPLOS’2021

CLoF Correctness

76

Model Checker
for WMM

Times out
after 12 hours

Inductive Approach

Base Step Inductive Step

mcstkt clh

Model Checker2

for WMM

< 10 minutes

Model Checker2

for WMM

L0

l1 l2

abstract
lock

2Oberhauser et al., VSync: push-button verification and optimization for synchronization primitives on weak memory models, ASPLOS’2021

CLoF Correctness

77

Model Checker
for WMM

Times out
after 12 hours

Inductive Approach

Base Step Inductive Step

mcstkt clh

Model Checker2

for WMM

< 10 minutes

Model Checker2

for WMM

L0

l1 l2

abstract
lock

< 10 minutes
2Oberhauser et al., VSync: push-button verification and optimization for synchronization primitives on weak memory models, ASPLOS’2021

Agenda

• How to figure out the hierarchy we need to use?

• How does our CLoF Lock Generator works?

• How do we know it is correct?

• How do we pick the best lock for the target platform?

78

Run Scripted Benchmark

• Run all lock combinations composed by the CLoF lock generator

• For B = 4 locks and L = 4 levels, we have BL = 44 = 256 combinations

• Up to 1 hour in a platform with 128 cores

79

Run Scripted Benchmark

x86 server – levelDB readrandom benchmark

• Run all lock combinations composed by the CLoF lock generator

• For B = 4 locks and L = 4 levels, we have BL = 44 = 256 combinations

• Up to 1 hour in a platform with 128 cores

arm server – levelDB readrandom benchmark

80

Run Scripted Benchmark

x86 server – levelDB readrandom benchmark

• Run all lock combinations composed by the CLoF lock generator

• For B = 4 locks and L = 4 levels, we have BL = 44 = 256 combinations

• Up to 1 hour in a platform with 128 cores

arm server – levelDB readrandom benchmark

No combination is
better for all
contention levels

81

Run Scripted Benchmark

x86 server – levelDB readrandom benchmark

• Run all lock combinations composed by the CLoF lock generator

• For B = 4 locks and L = 4 levels, we have BL = 44 = 256 combinations

• Up to 1 hour in a platform with 128 cores

arm server – levelDB readrandom benchmark

No combination is
better for all
contention levels

HC-best has best
performance

HC-best has best
performance

82

Run Scripted Benchmark

x86 server – levelDB readrandom benchmark

• Run all lock combinations composed by the CLoF lock generator

• For B = 4 locks and L = 4 levels, we have BL = 44 = 256 combinations

• Up to 1 hour in a platform with 128 cores

arm server – levelDB readrandom benchmark

No combination is
better for all
contention levels

HC-best has best
performance

LC-best has best
performance

HC-best has best
performance

LC-best has best
performance

83

Run Scripted Benchmark

x86 server – levelDB readrandom benchmark

• Run all lock combinations composed by the CLoF lock generator

• For B = 4 locks and L = 4 levels, we have BL = 44 = 256 combinations

• Up to 1 hour in a platform with 128 cores

arm server – levelDB readrandom benchmark

No combination is
better for all
contention levels

HC-best has best
performance

LC-best has best
performance

HC-best has best
performance

LC-best has best
performance

Which one should
be chosen?

84

Tuning Point: Choose Selection Policy

x86 server – levelDB readrandom benchmark
• CLoF stablishes 2 selection policies

for the best lock:

• HC-best prioritizes performance at high

contention

• LC-best prioritizes performance at low

contention

85

Tuning Point: Choose Selection Policy

x86 server – levelDB readrandom benchmark
• CLoF stablishes 2 selection policies

for the best lock:

• HC-best prioritizes performance at high

contention

• LC-best prioritizes performance at low

contention

HC: -5%

HC: 47%

86

Tuning Point: Choose Selection Policy

x86 server – levelDB readrandom benchmark
• CLoF stablishes 2 selection policies

for the best lock:

• HC-best prioritizes performance at high

contention

• LC-best prioritizes performance at low

contention

HC: -5%

HC: 47%

LC: 6%

LC: 32%

87

Tuning Point: Choose Selection Policy

x86 server – levelDB readrandom benchmark
• CLoF stablishes 2 selection policies

for the best lock:

• HC-best prioritizes performance at high

contention

• LC-best prioritizes performance at low

contention

HC: -5%

HC: 47%

LC: 6%

LC: 32%

User can tune which selection policy is desired

• Without the need to re-run the benchmark

88

Evaluation

• Another benchmark, called Kyoto Cabinet, is used to cross-validate results
• Display LC-best

89

Evaluation

+11%
+5%

+3%

• Another benchmark, called Kyoto Cabinet, is used to cross-validate results
• Display LC-best

90

Evaluation

+11%
+5%

+3%

+11%

• Another benchmark, called Kyoto Cabinet, is used to cross-validate results
• Display LC-best

+10%

+8%

91

Conclusion and Future Work

• CLoF locks

• fully leverage deep hierarchy

• are level heterogeneity

• can be optimized for target platform

• are correct-by-construction on Weak Memory Models

• Don’t miss the details!

• platform-specific optimizations

• analysis of lock combinations

• …

• Future work
• CLoF in the Linux kernel

• big.LITTLE platforms

92

Thanks!

93

Tuning Point: Choosing the Hierarchy Levels

• Not all levels will always be used

• Application can disable hyperthreads – x86 server

• Some levels may have small improvement – package level on Kunpeng 920

94

Tuning Point: Choosing the Hierarchy Levels

• Not all levels will always be used

• Application can disable hyperthreads – x86 server

• Some levels may have small improvement – package level on Kunpeng 920

95

• User can tune levels that are wanted

• Include/Remove levels found at discovery

