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Concurrency is Everywhere

Modern operating systems, databases & applications resort to
multi-core concurrency to achieve high performance.
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Concurrency is Everywhere

Modern operating systems, databases & applications resort to
multi-core concurrency to achieve high performance.

Multi-core concurrency:
One of its most important tasks is to synchronize

access to shared variables
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• HMCS creates a hierarchy of MCS locks

• Arbitrary number of levels
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Deep-hierarchy NUMA systems Multi-level NUMA-aware Locks
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60%
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Deep-hierarchy NUMA systems Multi-level NUMA-aware Locks

Multi-Level:
Utilizing the full deep-hierarchy in a 

lock improves performance
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Experiment - Heterogeneity
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For different platforms,
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Experiment - Heterogeneity

Level-heterogeneity:
For different levels,

the best lock may differ

Experiment – Platform Optimization

Platform Optimization:
For different platforms,

the best lock for a level may differ

So, how does this affects our lock 
design?
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Our Desired NUMA-aware lock
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• Multi-Level
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• Configurability for Platform Optimization



Our Desired NUMA-aware lock

• Showing lock correctness is 

challenging 

• Weak Memory Models (WMMs) make it 

even more complicated
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• Configurability for Platform Optimization



Our contribution: CLoF

We propose CLoF, a framework to generate locks for a target platform:

• that support an arbitrary hierarchy;

• for each level, the lock implementation may be different;

• that are correct-by-construction on Weak Memory Models.
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Our contribution: CLoF

We propose CLoF, a framework to generate locks for a target platform:

• that support an arbitrary hierarchy;

• for each level, the lock implementation may be different;

• that are correct-by-construction on Weak Memory Models.
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NUMA-aware locks Correctness on 
WMMs

Level heterogeneity & 
Architecture optimization

Multi-Level

lock cohorting PPPoPP’12   

HMCS PPoPP’15 
1  

CNA lock EuroSys’19   

ShflLock SOSP’19   

CLoF SOSP’21   

1Insufficient barriers, fixed in Oberhauser et al., Verifying and Optimizing the HMCS Lock for Arm Servers, NETYS’2021



Discover Memory 
Hierarchy

CLoF Workflow
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CLoF
Lock

Generator

Run 
scripted 
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Agenda

• How to figure out the hierarchy we need to use?

• How does our CLoF Lock Generator works?

• How do we know it is correct?

• How do we pick the best lock for the target platform?
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Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8
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Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8

Is this the full hierarchy?
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Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo
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Experimental Discovery
• 2 threads alternately increment a 

shared counter
• Darker colors => Higher throughput

?



• Not shown by lscpu/lstopo

• Information is shown in processors’ 

datasheet

• Not efficient

• Remained unstudied and unused

• HMCS<4> includes hidden 

cache group level

Discovering the Memory Hierarchy

Operating systems know the hierarchy

• Visible with Linux’s lscpu and lstopo

Taishan 200 server – Armv8
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Agenda

• How to figure out the hierarchy we need to use?

• How does our CLoF Lock Generator works?

• How do we know it is correct?

• How do we pick the best lock for the target platform?
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Compile-Time Syntactic RecursionTwo NUMA node example

CLoF Lock Generator
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acquire/release
calls
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Run Scripted Benchmark
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Run Scripted Benchmark

x86 server – levelDB readrandom benchmark

• Run all lock combinations composed by the CLoF lock generator

• For B = 4 locks and L = 4 levels, we have BL = 44 = 256 combinations

• Up to 1 hour in a platform with 128 cores

arm server – levelDB readrandom benchmark

No combination is 
better for all 
contention levels

HC-best has best 
performance

LC-best has best 
performance

HC-best has best 
performance

LC-best has best 
performance

Which one should 
be chosen?
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Tuning Point: Choose Selection Policy

x86 server – levelDB readrandom benchmark
• CLoF stablishes 2 selection policies 

for the best lock:

• HC-best prioritizes performance at high 

contention

• LC-best prioritizes performance at low 

contention
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Tuning Point: Choose Selection Policy

x86 server – levelDB readrandom benchmark
• CLoF stablishes 2 selection policies 

for the best lock:

• HC-best prioritizes performance at high 

contention

• LC-best prioritizes performance at low 

contention

HC: -5%

HC: 47%

LC: 6%

LC: 32%

User can tune which selection policy is desired

• Without the need to re-run the benchmark
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Evaluation

• Another benchmark, called Kyoto Cabinet, is used to cross-validate results
• Display LC-best
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Evaluation

+11%
+5%

+3%

+11%

• Another benchmark, called Kyoto Cabinet, is used to cross-validate results
• Display LC-best

+10%

+8%
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Conclusion and Future Work

• CLoF locks

• fully leverage deep hierarchy

• are level heterogeneity

• can be optimized for target platform

• are correct-by-construction on Weak Memory Models

• Don’t miss the details!

• platform-specific optimizations

• analysis of lock combinations

• …

• Future work
• CLoF in the Linux kernel

• big.LITTLE platforms
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Thanks!
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Tuning Point: Choosing the Hierarchy Levels

• Not all levels will always be used

• Application can disable hyperthreads – x86 server

• Some levels may have small improvement – package level on Kunpeng 920
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• User can tune levels that are wanted

• Include/Remove levels found at discovery


