
FlexOS: Towards Flexible OS Isolation

FGBS'22, 17th - 18th March 2022

Hugo Lefeuvre1, Vlad-Andrei Bădoiu2, Alexander Jung3,4, Stefan Teodorescu2,
Sebastian Rauch5, Felipe Huici6,4, Costin Raiciu2,7, Pierre Olivier1

1The University of Manchester, 2Politehnica Bucharest, 3Lancaster University, 4Unikraft.io,
5Karlsruhe Institute of Technology, 6NEC Labs Europe, 7Correct Networks

1

Current OS Designs

2

OS security/isolation strategies are fixed at design time!
Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

Current OS Designs

3

OS security/isolation strategies are fixed at design time!
Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

Current OS Designs

4

OS security/isolation strategies are fixed at design time!
Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

Current OS Designs

5

OS security/isolation strategies are fixed at design time!
Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

Removing user-kernel
separation?

Current OS Designs

6

OS security/isolation strategies are fixed at design time!
Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

Removing user-kernel
separation?

Using hardware capabilities?

Current OS Designs

7

OS security/isolation strategies are fixed at design time!
Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

Removing user-kernel
separation?

Using hardware capabilities?

Memory Protection Keys?

FlexOS: Flexible Isolation

8

Decouple security/isolation decisions from the OS design

FlexOS: Flexible Isolation

9

Decouple security/isolation decisions from the OS design

Achieve a range of trade-
offs instead of a single
point in the design space

FlexOS: Flexible Isolation

10

Decouple security/isolation decisions from the OS design

Achieve a range of trade-
offs instead of a single
point in the design space

Support a range of
isolation mechanisms and
granularities

Other Use-Cases for Flexible Isolation

11

Other Use-Cases for Flexible Isolation

12

Deployment to heterogeneous hardware
Make optimal use of each machine/architecture's
safety mechanisms with the same code

Other Use-Cases for Flexible Isolation

13

Deployment to heterogeneous hardware
Make optimal use of each machine/architecture's
safety mechanisms with the same code Quickly isolate vulnerable libraries

React easily and quickly to newly published
vulnerabilities while waiting for a full patch

Other Use-Cases for Flexible Isolation

14

Deployment to heterogeneous hardware
Make optimal use of each machine/architecture's
safety mechanisms with the same code Quickly isolate vulnerable libraries

React easily and quickly to newly published
vulnerabilities while waiting for a full patch

Incremental verification of code-bases
Mix and match verified and non-verified code-bases
while preserving guarantees

FlexOS 101: Approach in 4 points

15

FlexOS 101: Approach in 4 points

16

1 Focus on single-purpose appliances such as cloud microservices

FlexOS 101: Approach in 4 points

17

...the more applications run together, the least
specialization you can achieve

1 Focus on single-purpose appliances such as cloud microservices

FlexOS 101: Approach in 4 points

18

1 Focus on single-purpose appliances such as cloud microservices

Full-system (OS+app) understanding of compartmentalization 2

FlexOS 101: Approach in 4 points

19

1 Focus on single-purpose appliances such as cloud microservices

Full-system (OS+app) understanding of compartmentalization 2

Not "only application" or "only kernel":
consider everything and specialize

FlexOS 101: Approach in 4 points

20

1

Embrace the library OS philosophy: everything is a library...
network stack, nginx, libopenssl, sound driver, etc.

Focus on single-purpose appliances such as cloud microservices

Full-system (OS+app) understanding of compartmentalization 2

Not "only application" or "only kernel":
consider everything and specialize

FlexOS 101: Approach in 4 points

21

Focus on single-purpose appliances such as cloud microservices1

Abstract away the technical details of isolation mechanisms3

Full-system (OS+app) understanding of compartmentalization 2

FlexOS 101: Approach in 4 points

22

Page table, MPK, CHERI, TEEs? Not the same guarantees,
but a similar interface can be achieved.

Focus on single-purpose appliances such as cloud microservices1

Abstract away the technical details of isolation mechanisms3

Full-system (OS+app) understanding of compartmentalization 2

FlexOS 101: Approach in 4 points

23

Focus on single-purpose appliances such as cloud microservices1

Abstract away the technical details of isolation mechanisms3

Flexibility must not get into the way of performance 4

Full-system (OS+app) understanding of compartmentalization 2

FlexOS 101: Overview

24

FlexOS 101: Overview

25

compartments:
- comp1:
mechanism: intel-mpk
default: True

- comp2:
mechanism: intel-mpk
hardening: [cfi, asan]

libraries:
- libredis: comp1
- libopenjpg: comp2
- lwip: comp2

"Redis image with two compartments,
isolate libopenjpeg and lwip together"

config.yaml

FlexOS Toolchain
1 Input config

Happy users
config.yaml

FlexOS 101: Overview

26

compartments:
- comp1:
mechanism: intel-mpk
default: True

- comp2:
mechanism: intel-mpk
hardening: [cfi, asan]

libraries:
- libredis: comp1
- libopenjpg: comp2
- lwip: comp2

"Redis image with two compartments,
isolate libopenjpeg and lwip together"

config.yaml

FlexOS Toolchain
1 Input config

Happy users
config.yaml

FlexOS 101: Overview

27

compartments:
- comp1:
mechanism: intel-mpk
default: True

- comp2:
mechanism: intel-mpk
hardening: [cfi, asan]

libraries:
- libredis: comp1
- libopenjpg: comp2
- lwip: comp2

"Redis image with two compartments,
isolate libopenjpeg and lwip together"

config.yaml

FlexOS Toolchain
1 Input config

Happy users
config.yaml

FlexOS 101: Overview

28

MPK EPT ...

Isolation Backends

Select isolation
mechanism ("Backend")

2

FlexOS Toolchain
1 Input config

Happy users
config.yaml

FlexOS 101: Overview

29

MPK EPT ...

Isolation Backends

Select isolation
mechanism ("Backend")

2

boot sched mm

boot sched
vfs ...

boot
ramfs

Core Libraries

Kernel & User Libs

Select libraries (kernel and app),
rewrite, and statically put in
compartments

3

FlexOS Toolchain
1 Input config

Happy users
config.yaml

FlexOS 101: Overview

30

MPK EPT ...

Isolation Backends

Select isolation
mechanism ("Backend")

2

boot sched mm

boot sched
vfs ...

boot
ramfs

Core Libraries

Kernel & User Libs

Select libraries (kernel and app),
rewrite, and statically put in
compartments

3

mmboot sched

netdev

c
o
m
p
1

c
o
m
p
2

libssl

Generate image with appropriate isolation properties

MPK

mmboot sched

libopenjpeg

c
o
m
p
1

c
o
m
p
2

...

VMs
libssl

c
o
m
p
3

Possible Image 1 Possible Image 2

4

...

FlexOS Toolchain
1 Input config

Happy users
config.yaml

FlexOS 101: Overview

31

MPK EPT ...

Isolation Backends

Select isolation
mechanism ("Backend")

2

boot sched mm

boot sched
vfs ...

boot
ramfs

Core Libraries

Kernel & User Libs

Select libraries (kernel and app),
rewrite, and statically put in
compartments

3

mmboot sched

netdev

c
o
m
p
1

c
o
m
p
2

libssl

Generate image with appropriate isolation properties

MPK

mmboot sched

libopenjpeg

c
o
m
p
1

c
o
m
p
2

...

VMs
libssl

c
o
m
p
3

Possible Image 1 Possible Image 2

4

...

FlexOS Toolchain
1 Input config

Happy users
config.yaml

FlexOS 101: Mechanism Abstraction

32

Based on a highly modular LibOS design (Unikraft)

FlexOS 101: Mechanism Abstraction

33

Based on a highly modular LibOS design (Unikraft)

boot sched mm

ssl jpeg

vfs ...

nginx

ramfs

Core Libraries

Kernel & User Libs

Such libOSes are composed
of fine-granular,
independent libraries

FlexOS 101: Mechanism Abstraction

34

Reuse libraries as finest
granularity of
compartmentalization

Based on a highly modular LibOS design (Unikraft)

boot sched mm

ssl jpeg

vfs ...

nginx

ramfs

Core Libraries

Kernel & User Libs

Such libOSes are composed
of fine-granular,
independent libraries

FlexOS 101: Mechanism Abstraction

35

Reuse libraries as finest
granularity of
compartmentalization

Based on a highly modular LibOS design (Unikraft)

boot sched mm

ssl jpeg

vfs ...

nginx

ramfs

Core Libraries

Kernel & User Libs

Such libOSes are composed
of fine-granular,
independent libraries

Define them as part
of the FlexOS API

Cross-library calls and
shared data are replaced by
an abstract construct (gates,
data sharing primitives)

"Pre-compartmentalize" them

FlexOS 101: Mechanism Abstraction

36

Reuse libraries as finest
granularity of
compartmentalization

Based on a highly modular LibOS design (Unikraft)

boot sched mm

ssl jpeg

vfs ...

nginx

ramfs

Core Libraries

Kernel & User Libs

Such libOSes are composed
of fine-granular,
independent libraries

Define them as part
of the FlexOS API

Cross-library calls and
shared data are replaced by
an abstract construct (gates,
data sharing primitives)

"Pre-compartmentalize" them

At build time, these abstract
constructs are replaced with a
particular implementation by the
toolchain. These implementations
are defined by the backends.

MPK VMs TEEs ...

FlexOS 101: Compartmentalization API

37

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

FlexOS 101: Compartmentalization API

38

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

FlexOS 101: Compartmentalization API

39

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

FlexOS 101: Compartmentalization API

40

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

FlexOS 101: Compartmentalization API

41

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate
instantiation at
build time Coccinelle

lwip

app

1

0

FlexOS 101: Compartmentalization API

42

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate
instantiation at
build time Coccinelle

lwip

app

1

0

Replace with shared heap allocation

FlexOS 101: Compartmentalization API

43

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate
instantiation at
build time Coccinelle

lwip

app

1

0

Replace with shared heap allocation
Replace with MPK gate

FlexOS 101: Compartmentalization API

44

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate
instantiation at
build time Coccinelle

lwip

app

1

0

Replace with shared heap allocation
Replace with MPK gate

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

lwip + app

FlexOS 101: Compartmentalization API

45

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate
instantiation at
build time Coccinelle

lwip

app

1

0

Replace with shared heap allocation
Replace with MPK gate

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

lwip + appReplace with
normal stack
allocation

FlexOS 101: Compartmentalization API

46

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate
instantiation at
build time Coccinelle

lwip

app

1

0

Replace with shared heap allocation
Replace with MPK gate

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

lwip + appReplace with
normal stack
allocation

Replace with
function call

Prototype

47

Implementation on top of Unikraft

Backend implementations for Intel MPK and VMs (EPT)

Port of libraries: network stack, scheduler, filesystem, time subsystem

Port of applications: Redis, Nginx, SQLite, iPerf server

Prototype

48

Implementation on top of Unikraft

Backend implementations for Intel MPK and VMs (EPT)

Port of libraries: network stack, scheduler, filesystem, time subsystem

Port of applications: Redis, Nginx, SQLite, iPerf server

This talk: focus on demonstrating flexibility and performance

more results in our paper

Flexibility

49

Flexibility

50

Runtime performance with Redis in requests/s

Flexibility

51

Runtime performance with Redis in requests/s

FlexOS libraries used in the Redis image
(only a subset for readability):
• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

Flexibility

52

Runtime performance with Redis in requests/s

FlexOS libraries used in the Redis image
(only a subset for readability):
• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

One configuration and its associated performance
(80 configurations in total)

Flexibility

53

Runtime performance with Redis in requests/s

FlexOS libraries used in the Redis image
(only a subset for readability):
• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

One configuration and its associated performance
(80 configurations in total)

The color of boxes indicates the compartment:

Compartment 1 Compartment 2 Compartment 3

Flexibility

54

Runtime performance with Redis in requests/s

FlexOS libraries used in the Redis image
(only a subset for readability):
• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

One configuration and its associated performance
(80 configurations in total)

The color of boxes indicates the compartment:

Compartment 1 Compartment 2 Compartment 3

The dot whether hardening (ASan, Safestack, etc.) is enabled:

Hardening on Hardening off

Flexibility

55

Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

1.2M requests/s292K requests/s
Large safety / performance space! (4x)1

Flexibility

56

Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

1.2M requests/s292K requests/s
Large safety / performance space! (4x)1

Smooth slope, performance degrades gracefully2

Flexibility

57

Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

Similar performance, very different properties!3

need to reason about communication patterns, fast paths

Flexibility

58

Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

Similar performance, very different properties!3

need to reason about communication patterns, fast paths

Flexibility

59

Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

lwip

uksched

...

lwip

uksched

...

Similar performance, very different properties!3

need to reason about communication patterns, fast paths

Flexibility

60

Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

lwip

uksched

...

lwip

uksched

...

Performance-wise:

=

2 crossings

2 crossings

Similar performance, very different properties!3

need to reason about communication patterns, fast paths

Flexibility

61

Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

lwip

uksched

...

lwip

uksched

...

Performance-wise:

=

2 crossings

2 crossings

Similar performance, very different properties!3

need to reason about communication patterns, fast paths

You can get some safety for
free by exploring intelligently

Performance

62

Performance

63

Time to perform 10K SQLite INSERT queries in seconds

Performance

64

Time to perform 10K SQLite INSERT queries in seconds

Number of compartments and mechanism (e.g., PT2 = 2
compartments with the page table)

Performance

65

Time to perform 10K SQLite INSERT queries in seconds

Number of compartments and mechanism (e.g., PT2 = 2
compartments with the page table)

VMM/environment

Performance

66

No overhead when disabling isolation – you only pay for what you get1

Performance

67

The MPK backend compares very positively to competing solutions2

Performance

68

The MPK backend compares very positively to competing solutions2

Tricky comparison with CubicleOS - they're using linuxu, a Linux userland
debug platform of Unikraft

1.96x

2.37x

Performance

69

The EPT backend too compares positively to competing solutions3

Exploring the Design Space

70

Now, we've a nice framework!

We can leverage FlexOS to get the most secure image for a given
performance budget!

Exploring the Design Space

71

Now, we've a nice framework!

We can leverage FlexOS to get the most secure image for a given
performance budget!

Problem: some configurations are not comparable

Exploring the Design Space

72

Now, we've a nice framework!

We can leverage FlexOS to get the most secure image for a given
performance budget!

Problem: some configurations are not comparable

lwip

uksched

nginx

...

ASan

ASan

lwip

uksched

nginx

...

ASanSafeStack>
<
=

Exploring the Design Space

73

Now, we've a nice framework!

We can leverage FlexOS to get the most secure image for a given
performance budget!

Problem: some configurations are not comparable

lwip

uksched

nginx

...

ASan

ASan

lwip

uksched

nginx

...

ASanSafeStack>
<
=

How can we reason about
security/performance
trade-offs?

Exploring the Design Space

74

What we propose: consider configurations as a
partially ordered set (poset)

Exploring the Design Space

75

What we propose: consider configurations as a
partially ordered set (poset)

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

Exploring the Design Space

76

What we propose: consider configurations as a
partially ordered set (poset)

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

ASan
- ASan

ASan

Exploring the Design Space

77

What we propose: consider configurations as a
partially ordered set (poset)

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

Two configurations that do not share a
path are simply not comparable

Both
ASan

SafeStack
Both

ASan
- ASan

ASan

Exploring the Design Space

78

We can then label each node with performance
characteristics (in practice no need to label everything)

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11

Fictive numbers here

Exploring the Design Space

79

Based on this ordering and labeling we can choose the
last node of each path that satisfies the performance
constraints

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11

Exploring the Design Space

80

Based on this ordering and labeling we can choose the
last node of each path that satisfies the performance
constraints

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11

Both
ASan

Both
SafeStack

Curated list of optimal configurations

Let the user do
the final choice

Exploring the Design Space

81

Based on this ordering and labeling we can choose the
last node of each path that satisfies the performance
constraints

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11

Both
ASan

Both
SafeStack

Curated list of optimal configurations

Let the user do
the final choice

No need to evaluate everything!

Applying POSets on Redis

82

Reduction of 80
configurations to 5
candidates

In a Nutshell

83

There is a need for isolation flexibility
• OS Specialization, hardware heterogeneity
• or quickly react to vulnerabilities!

Current approaches: one isolation approach at design time

Decouple isolation from the OS design:
• Make isolation decisions at build time
• Explore performance v.s. security trade-offs

Interested?

84

Webpage: https://project-flexos.github.io/
Our ASPLOS'22 paper: https://dl.acm.org/doi/10.1145/3503222.3507759
By e-mail: hugo.lefeuvre@manchester.ac.uk

License: 3-Clause BSD License

Get in touch!

We're hiring! PhD and Postdoc positions at The University of Manchester.

https://project-flexos.github.io/
https://dl.acm.org/doi/10.1145/3503222.3507759

