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OS security/isolation strategies are fixed at design time!
Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

Removing user-kernel 
separation?

Using hardware capabilities?

Memory Protection Keys?
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Decouple security/isolation decisions from the OS design

Achieve a range of trade-
offs instead of a single 
point in the design space

Support a range of 
isolation mechanisms and 
granularities
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Deployment to heterogeneous hardware
Make optimal use of each machine/architecture's 
safety mechanisms with the same code Quickly isolate vulnerable libraries

React easily and quickly to newly published 
vulnerabilities while waiting for a full patch

Incremental verification of code-bases
Mix and match verified and non-verified code-bases 
while preserving guarantees
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specialization you can achieve

1 Focus on single-purpose appliances such as cloud microservices
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1

Embrace the library OS philosophy: everything is a library... 
network stack, nginx, libopenssl, sound driver, etc.

Focus on single-purpose appliances such as cloud microservices

Full-system (OS+app) understanding of compartmentalization 2

Not "only application" or "only kernel": 
consider everything and specialize
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Page table, MPK, CHERI, TEEs? Not the same guarantees, 
but a similar interface can be achieved.

Focus on single-purpose appliances such as cloud microservices1

Abstract away the technical details of isolation mechanisms3

Full-system (OS+app) understanding of compartmentalization 2
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Focus on single-purpose appliances such as cloud microservices1

Abstract away the technical details of isolation mechanisms3

Flexibility must not get into the way of performance 4

Full-system (OS+app) understanding of compartmentalization 2
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compartments:
- comp1:
mechanism: intel-mpk
default: True

- comp2:
mechanism: intel-mpk
hardening: [cfi, asan]

libraries:
- libredis: comp1
- libopenjpg: comp2
- lwip: comp2

"Redis image with two compartments, 
isolate libopenjpeg and lwip together"

config.yaml

FlexOS Toolchain
1 Input config

Happy users
config.yaml
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Isolation Backends

Select isolation 
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Reuse libraries as finest 
granularity of 
compartmentalization

Based on a highly modular LibOS design (Unikraft)

boot sched mm

ssl jpeg

vfs ...

nginx

ramfs

Core Libraries

Kernel & User Libs

Such libOSes are composed 
of fine-granular, 
independent libraries

Define them as part 
of the FlexOS API

Cross-library calls and 
shared data are replaced by 
an abstract construct (gates, 
data sharing primitives)

"Pre-compartmentalize" them

At build time, these abstract 
constructs are replaced with a 
particular implementation by the 
toolchain. These implementations 
are defined by the backends.

MPK VMs TEEs ...
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int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);
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int rc, connfd;
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/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
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Porting

Annotate shared data
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int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate 
instantiation at 
build time Coccinelle

lwip

app

1

0

Replace with shared heap allocation
Replace with MPK gate

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

lwip + appReplace with 
normal stack 
allocation

Replace with 
function call
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Backend implementations for Intel MPK and VMs (EPT)

Port of libraries: network stack, scheduler, filesystem, time subsystem

Port of applications: Redis, Nginx, SQLite, iPerf server
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Implementation on top of Unikraft

Backend implementations for Intel MPK and VMs (EPT)

Port of libraries: network stack, scheduler, filesystem, time subsystem

Port of applications: Redis, Nginx, SQLite, iPerf server

This talk: focus on demonstrating flexibility and performance

more results in our paper
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(80 configurations in total)



Flexibility

53

Runtime performance with Redis in requests/s

FlexOS libraries used in the Redis image 
(only a subset for readability):
• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

One configuration and its associated performance 
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Runtime performance with Redis in requests/s

FlexOS libraries used in the Redis image 
(only a subset for readability):
• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

One configuration and its associated performance 
(80 configurations in total)

The color of boxes indicates the compartment:

Compartment 1 Compartment 2 Compartment 3

The dot whether hardening (ASan, Safestack, etc.) is enabled:

Hardening on Hardening off
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Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

1.2M requests/s292K requests/s
Large safety / performance space! (4x)1
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Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

1.2M requests/s292K requests/s
Large safety / performance space! (4x)1

Smooth slope, performance degrades gracefully2
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Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off
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uksched

...

lwip

uksched

...

Performance-wise:

=
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Similar performance, very different properties!3
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Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

lwip

uksched

...

lwip

uksched

...

Performance-wise:

=

2 crossings

2 crossings

Similar performance, very different properties!3

need to reason about communication patterns, fast paths

You can get some safety for 
free by exploring intelligently
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Time to perform 10K SQLite INSERT queries in seconds
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Number of compartments and mechanism (e.g., PT2 = 2 
compartments with the page table)
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Time to perform 10K SQLite INSERT queries in seconds

Number of compartments and mechanism (e.g., PT2 = 2 
compartments with the page table)

VMM/environment
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No overhead when disabling isolation – you only pay for what you get1
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The MPK backend compares very positively to competing solutions2
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The MPK backend compares very positively to competing solutions2

Tricky comparison with CubicleOS - they're using linuxu, a Linux userland 
debug platform of Unikraft

1.96x

2.37x
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The EPT backend too compares positively to competing solutions3
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performance budget!
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nginx
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ASan
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nginx

...

ASanSafeStack>
<
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Now, we've a nice framework!

We can leverage FlexOS to get the most secure image for a given 
performance budget!

Problem: some configurations are not comparable

lwip

uksched

nginx

...

ASan

ASan

lwip

uksched

nginx

...

ASanSafeStack>
<
=

How can we reason about 
security/performance 
trade-offs?
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partially ordered set (poset)
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What we propose: consider configurations as a 
partially ordered set (poset)

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

Two configurations that do not share a 
path are simply not comparable

Both
ASan

SafeStack
Both

ASan
- ASan

ASan
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We can then label each node with performance 
characteristics (in practice no need to label everything)

-
-
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-

-
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SafeStack
-

SafeStack

Both
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SafeStack
Both Both

SafeStack
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Both

Both
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SafeStack
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SafeStack
SafeStack

...

...
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04

11 07

11

Fictive numbers here
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Based on this ordering and labeling we can choose the 
last node of each path that satisfies the performance 
constraints

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11



Exploring the Design Space

80

Based on this ordering and labeling we can choose the 
last node of each path that satisfies the performance 
constraints

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11

Both
ASan

Both
SafeStack

Curated list of optimal configurations

Let the user do 
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Based on this ordering and labeling we can choose the 
last node of each path that satisfies the performance 
constraints

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
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Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11

Both
ASan

Both
SafeStack

Curated list of optimal configurations

Let the user do 
the final choice

No need to evaluate everything!
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Reduction of 80 
configurations to 5 
candidates
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There is a need for isolation flexibility
• OS Specialization, hardware heterogeneity
• or quickly react to vulnerabilities!

Current approaches: one isolation approach at design time

Decouple isolation from the OS design:
• Make isolation decisions at build time
• Explore performance v.s. security trade-offs
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Webpage: https://project-flexos.github.io/
Our ASPLOS'22 paper: https://dl.acm.org/doi/10.1145/3503222.3507759
By e-mail: hugo.lefeuvre@manchester.ac.uk

License: 3-Clause BSD License

Get in touch!

We're hiring! PhD and Postdoc positions at The University of Manchester.

https://project-flexos.github.io/
https://dl.acm.org/doi/10.1145/3503222.3507759

