
Jannes Timm, Jan S. Rellermeyer

Why Multi-Threading Should No Longer Be a DIY Job



Seite 2FGBS’22 - Hamburg

Concurrency is Hard…

?
Hardware Software

Producer
Consumer

Consumer
Consumer

etc.



Seite 3FGBS’22 - Hamburg

To Thread or not to Thread?

(Single-Threaded) Event Driven

Multithreaded

Thread Pools (reusing threads, sometimes adaptive using a Watermark model)
JVM (Executors), MariaDB, .NET CLR, etc.

Resource-Aware Threads

[F. Dabek, N. Zeldovich, N., F. Kaashoek, D. Mazieres, & R. Morris: Event-driven programming for robust software. In EuroSys 2002]

[V.S. Pai, P. Druschel, W. Zwaenepoel: Flash: An efficient and portable Web server. In USENIX ATC 1999]

[R. Von Behren, J. Condit & E. Brewer: Why Events Are a Bad Idea (for High-Concurrency Servers). In HotOS 2003]

[R. Von Behren, J. Condit, F. Zhou, G.C. Necula & E. Brewer Capriccio: scalable threads for internet services. ACM SIGOPS OSR 2003]

[F.W. Burton & M.R. Sleep: Executing functional programs on a virtual tree of processors. In FPCA 1981]



Seite 4FGBS’22 - Hamburg

State of the Art

Typical setup:

Hardware

#threads = #cores

flawed!

+ manual tuning knob



Seite 5FGBS’22 - Hamburg

When Less is More

EclipseCon Europe 2019 / OSGi Community Event 20195

default static-bestfit dynamic
0

250

500

750

1000

1250

1500

1750

R
u
n
ti
m

e
(s

)

128/128 16/128 14/128

128/128
32/128 32/128

128/128
32/128 34/128

default static-bestfit dynamic
0

500

1000

1500

2000

2500

3000

R
u
n
ti
m

e
(s

)

128/128 64/128 64/128

128/128 128/128 32/128

128/128 128/128 64/128

128/128 128/128 32/128

128/128 128/128

32/128

128/128 16/128

16/128

Terasort PageRank
R R -> S S -> W R S S S S W

- 54 %- 34 %- 47 % - 16 %

[S. Omranian Khorasani, J.S. Rellermeyer, D. Epema: Self-Adaptive Executors for Big Data Processing. In: Middleware 2019]



Seite 6

Towards Self-Adaptive Thread Pools

FGBS’22 - Hamburg

§ Target Metric

rwchar-rate R 𝑡!, 𝑡" =

$
#∈%

𝑟𝑐ℎ𝑎𝑟#,'! +𝑤𝑐ℎ𝑎𝑟#,'! − (𝑟𝑐ℎ𝑎𝑟#,'" +𝑤𝑐ℎ𝑎𝑟#,'")
𝑡" − 𝑡!



Seite 7

Controller Logic

§ Hill-climbing approach

FGBS’22 - Hamburg

For most experiments: 1500ms interval length and 10% adjustment



Seite 8

Experimental Results: Synthetic Workload

§ Workers read a file of 2MiB into memory and write it back to disk (“nosync”)
§ Variant “sync”: writeback, call fsync
§ Variant “nosync-sync” first batch nosync, second batch sync

§ Compare three setups:
§ “fixed”: experimental optimum, determined through parameter sweep*
§ “watermark”: classic high-low watermark model
§ “adaptive”: our solution using hill-climbing with rwchar-rate

*3% tolerance and favor lower thread pool size

FGBS’22 - Hamburg



Seite 9

Experimental Results: Synthetic Workload

§ Runtime:

§ Pool size:

FGBS’22 - Hamburg



Seite 10

Performance Variability Happens…

§ In the small:

§ In the large: 

FGBS’22 - Hamburg

[A. Uta, A. Custura, D. Duplyakin, I. Jimenez, J.S. Rellermeyer, C. Maltzahn, R. Ricci & A. Iosup: Is Big Data Performance Reproducible 
in Modern Cloud Networks? In NSDI 2020]



Seite 11

Experimental Results: RocksDB

§ Write-heavy workload: sequential key insertion (fillseq)
§ Flush pool size has significant influence on the performance

§ Blue: default setting, Red: hand-optimized
§ Interval length has an impact on the adaptive solution.

§ Green: 1500 ms, Olive: 1000 ms

FGBS’22 - Hamburg



Seite 12

Why Thread Pool Management Should be an OS Service

§ We can use the machine resources more efficiently when tuning thread 
pools for I/O-intensive applications

§ Manual thread pool tuning is tedious…
§ … but also futile if the environment changes

§ Multi-tenant environments like containers, etc.
§ Statically tuned applications are selfish

§ The OS already collects performance metrics and is supposed to be a 
mediator

§ Providing thread pools as an OS service would allow us to implement better 
QOS for multi-tenant environments

FGBS’22 - Hamburg


