FGBS Spring 2022

Enabling Control-Flow Integrity
with Pointer Authentication in FPGA SoC Platforms

Gabriele Serra*, Pietro Fara*, Giorgiomaria Cicero*
Francesco Restuccia', Alessandro Biondi*

*Scuola Superiore Sant’Anna, Pisa
"University of California, San Diego

INTRODUCTION ?

Embedded systems

* OSes are written in C/C++

* EXposed to public access (especially In
automotive and railway environments)

INTRODUCTION

EY

Embedded systems

* OSes are written in C/C++

* EXposed to public access (especially In
automotive and railway environments)

Susceptible to attacks
* Code-Reuse-Attacks

* Re-use existent piece of code

* |.e. flow deviated to gain root access
* Return-Oriented programming

I

0

e

OS Service

Lib C

Attacked
program

INTRODUCTION

Embedded systems

* OSes are written in C/C++

* EXposed to public access (especially In
automotive and railway environments)

Susceptible to attacks
* Code-Reuse-Attacks

* Re-use existent piece of code

* |.e. flow deviated to gain root access
* Return-Oriented programming

Mitigation technique
* Address space layout randomization (ASLR)
* Integrity check of control flow (CFl)

1}

0

E_

EY

OS Service

Lib C

Attacked
program

INTRODUCTION ?

CFl basic idea:

* puild a Control Flow Graph (CFG)
of the program

* CFG defines the legal execution

INTRODUCTION

CFl basic idea:

* puild a Control Flow Graph (CFG)
of the program

* CFG defines the legal execution

ldr ro, method

NG
N

ret

void foo() { ... }
void main() {

obj->method = foo;
obj->method();

—

INTRODUCTION ?

CFl basic idea: void foo() { ... }
* build a Control Flow Graph (CFG)
of the program

* CFG defines the legal execution obj->method = foo;
obj->method();

ldr r®, method -_—”//,
<

blr ro
\ ARM introduced hw supports:

* Branch Targets ldentification (BTI)
* Forward branch protection

X— * Pointer Authentication Code (PAC)

* Backward branch protection

void main() {

ret

BACKGROUND ?

Pointers in AArch64:

* Address represented on [0:VA_SIZE]
* Typically VA SIZE =48

* Empty [VA_SIZE:54] and [56:63]

63 5655 54 VA SIZE VA_SIZE—]_ 0

reserved
low/high

tag/reserved

address

BACKGROUND

AArch64 Pointer Authentication Codes (PAC):

* Hardware-based CFl

* Leverages empty space on 64-bit virtual addresses
* Append a Message Authentication Code (MAC)

63

56

55

54 VA SIZE VA SIZE-1

i

|
7 l
%A

address

reserved
low/high

tag/reserved

BACKGROUND ?

Introduced two insns:

* PAC
 AUTH :

PAC: 0x0000AABBCCDDEEFF
PAC Creation takes: bointer
* A pointer -
A 64-bit context Context PAC | Pointer]
« A 128-bit secret key :

Key 0x1234AABBCCDDEEFF

PAC algorithm ‘H’ can be:
« QARMA
 Implementation defined

BACKGROUND ?

Introduced two insns:

’ PACH AUTH:
« AUT
0x1234AABBCCDDEEFF

PAC Creatlon takes: [pac | Pointer | 0X1234 = 0x1234 .
* A pointer \ / Pointer
« A 64-bit context Context : .
* A 128-bit secret key > y 1 | Pointer

k Key [ox1236 1= 0x1234 ’
PAC algorithm ‘H’ can be: 0x3000AABBCCDDEEFF
+ QARMA ;

 Implementation defined 0b10000000

BACKGROUND ?

Introduced two insns:

* PAC
- AUTH
- . paciasp
PAC C'.'eat“)n takes: Stp fp, lr, [sp, #-FRAME_SIZE]!
* A pointer mov fp, sp
¢ A 64_bit ConteXt TUunNncLion poay
* A 128-bit secret key 1dp fp, lr, [spl, #FRAME_SIZE
autiasp
PAC algorithm ‘H’ can be: | -

« QARMA
 Implementation defined

CONTRIBUTIONS

Pointer authentication ISSUES

* Weakness against signing gadget
* Weakness against kernel attackers
* Cross EL/Key forgeries
* Key memory leak
* Attack cannot be detected
* Reported to ARM by Cicero et al in 2019
* Will be fixed with FPAC in ARM v8.6
* Available only on ARM Av8.3
* Currently no COTS SoC available

CONTRIBUTIONS

Pointer authentication ISSUES

* Weakness against signing gadget
* Weakness against kernel attackers
* Cross EL/Key forgeries
* Key memory leak
* Attack cannot be detected
* Reported to ARM by Cicero et al in 2019
* Will be fixed with FPAC in ARM v8.6
* Available only on ARM Av8.3
* Currently no COTS SoC available

pm—

Leverage on PL &
virtualization to counteract
these issues!

15

CONTRIBUTIONS

CLARE

CLARE is a hypervisor-centric software

stack. It simplifies the development

cyber-physical systems offering:

* heterogeneous computing platforms
support

* ready-to-use environment for deploying
mixed-criticality applications.

&P

Secure
Software

CLARE
Middleware

Trusted 0S

HW Acceleration manager

B

Rich
Software

Rich 0S

CLARE
Middleware

G

Critical
Software

CLARE
Middleware

RTOS

CLARE-Hypervisor

Check it out @ clare.santannapisa.it

Safety&Security Services

Hardware Platform

https://clare.santannapisa.it/

CONTRIBUTIONS ?

Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PAto all AArch64 SoC

App App ELO

Kernel EL1

Clare hypervisor EL2

CONTRIBUTIONS ?

Leverage on CLARE hypervisor to:
1. Improve key management

App App ELO
@ e
m Kernel EL1
y
N OKEYREGISTERS | == T T T = === ===mmmmmmmm------ee
Clare hypervisor EL2

\ g
VIRTUALIZE Q

ACCESS TO KEY

17

CONTRIBUTIONS

Leverage on CLARE hypervisor to:
1. Improve key management

App App ELO

© e
Kernel Trusted EL1

OSA

HYPERVISOR TRAP ACCESS __________________________:_= ______ —_—

TO KEY REGISTERS e T___
Clare hypervisor e L2

4 VIRTUALIZE
—========================fACCESSTOKEYIN

EL1S

Secure Monitor J EL3

18

CONTRIBUTIONS ?

Leverage on CLARE hypervisor to:

2. Provide PA to all AArch64 SoC

App App ELO

EL1

Kernel

HYPERVISOR CAN EMULATE | _ _ & & o e e e e e e e e e e e o e o e o o o = = = — s
INSTRUCTIONS ~

\)} Clare hypervisor EL2
J

20

CONTRIBUTIONS

Leverage on CLARE hypervisor to:

2. Provide PA to all AArch64 SoC

App App

P
. HW

\ Clare hyperV{sor J [Accelerator/J EL2

HYPERVISOR CAN DETECT 0

ATTACKS

CONTRIBUTIONS ?

Logic structure of PAC-PL HW accelerator

_ _ PAC-PL accelerator

Deylce reglsters are ‘ R ~ - \
Splltted |n tWO SEtS, Interrupt to 63 0
privileged and non- P KEY_LOW

= KEY_HIGH >
privileged. L =1 !

* The device can send an comroonien| | S QARMA-crypto
- = 63 0
Interrupt to the CPU when PLAIN >
authentication fails. TWK
CIPH < >

21

22

CONTRIBUTIONS

paclasp
stp
mowv

; Tfunct

fp, lr, [=p,

fp, sp

ilon oody

-

Signing

#-FRAME_SIZE]!

|| s

write LR & SP

FPGA

in PLAIN and TWK

read CIPH

>

LR value signed

1
L

sign LR

destroy
CIPH

mov x10, #DEV_BASE
mov x9, sp

0:

; Write 1lr and sp 1n the device
stp lr, x9, [x10, #DEV_PLAIN_OFFSET]
; read the signed pointer from the device

l1dr x11, [x10, #DEV_CIPH_OFFSET]
; retry 1f the signed polinter 1s nu
cbz x11, Ob

. 7 = - : ' 7 o e A e
; place the signed pointer 1in the

mov lr, =x11

b
[

3

. .
F i T T
1nK redgls

ot

; former prologue
stp fp, 1lr, [sp, # FRAME_SIZE]'!
mov fp, sp

23

CONTRIBUTIONS

ldp
autiasp
ret

PS

fp,; 1lr;, [8p];

Authentication

FPGA

write LR & SP

in CIPH and TWK

read CIPH

‘interrupt on auth fails

original LR value

> I

authenticate
LR

destroy
CIPH

#FRAME_SIZE

; former epilogue
ldp fp, 1lr, [sp], #FRAME_SIZE
; end of former epilogue

mov x10, #DEV_BASE
mov x9, sp

1:

; write sp and 1lr in the device

stp x9, lr, [x10, #DEV_TWK_OFFSET]

; read the authenticated pointer

ldr x11, [x10, #DEV_CIPH_OFFSET]

; retry if the authenticated pointer is null
cbz x11, 1b

; place the auth. pointer in the 1link register
mov lr, x11

ret

EVALUATION

Overhead (%) for
TACLeBench collection:

* In some benchmark the overhead
was under timer resolution (us)

* 21 out of 25 of them have
overhead below 10% and the
average overhead introduced is
about 16.65%

* Each function protected by our
plugin increases its footprint by 48
bytes.

24

Overhead %

100%
10%
1%
0.1%
0.01%

SEESESCLH¥DELY Q8L
=i EEEEUEE-:':I":IMI:;:
‘26 A B ¢ < =
gﬂj%IUHE EH‘EEL’:&:E
= %J:I h B

-]
= = Bl

i

Ims

ludemp

md5
minver

mpeg?2

ndes —G_———

powerwindow —

rijndael_dec

rijndael_enc —

sha
susan

https://github.com/tacle/tacle-bench

EVALUATION

“Analytic” and measured
upper bounds:

* Hardware accelerator behavior was
measured with a System ILA

* PS — PL write/read propagation
derived with a customer
hardware device probing 1000000
requests (w/ hot-caches on bare-
metal firmware)

Epilogue

Prologue

EY

— Upper bound — Max Measured ‘

| 448

| 486

520

520

0

100

200 300 400
PS Clock cycles

500

GO0

26

CONCLUSION & FUTURE DIRECTIONS

Issues

* Dumb (all-or-nothing) protection model

* The cost is heavy for recursive or call-
intensive programs

Future directions

Implement and test-out the same approach
with a pure software emulation

Make the protection model “smarter”,
analyzing the code and produce a
specialized variant

Tune up (at compile time) the protection
degree based on the cost/vulnerability
degree

PAC-PL: Enabling Control-Flow Integrity with
Pointer Authentication in FPGA SoC Platforms

Abstract—Control-flow integrity (CFI) is an effective tech-
nique to enhance the security of software systems. Processor
designers recently started to provide hardware-based support to
etficiently implement CFI, such as the pointer authentication (PA)
feature provided by ARM starting from ARMvS.3-A processor
architectures. These CFI mechanisms are also accompanied by
support in the mainline codebase of popular compilers (such
as GCC and LLVM) and the Linux operating system. As
such, they are expected to establish as widespread security
mechanisms. Nevertheless, many commercial chips still do not
support hardware-assisted CFL, even some of the ones that just
entered the market. This paper presents PAC-PL, a solution to
enable hardware-assisted CFI on heterogeneous platforms that
include a field-programmable gate array (FPGA) fabric, such as
the Xilinx Ultrascale+ and Versal. PAC-PL comes with compiler-
and OS-level support, is compatible with ARM’s PA, and enables
advanced key management and attack detection strategies. A
timing analysis for PAC-PL is also presented. PAC-PL was ex-
perimentally evaluated with state-of-the-art benchmarks in terms
of run-time overhead, memory footprint, and FPGA resource
consumption, resulting in a practical solution for implementing
CFL

Accepted @ RTAS (2022) - Milan (TBA)

Memory corruption vulnerabilities can be exploited to hi-
jack the canonical execution flow of software processes by
overriding part of their data in memory, such as pointers
pushed into the stack. Code-reuse attacks (CRA) [2] are a
modern example of attacks taking advantage of these vulnera-
bilities. CRA aim at manipulating the execution of a program
modifying the control flow of a process by combining proces-
sor instructions already present in a system. Historically, CRA
date back to 1997, when Peslyak [3] proposed the famous
return-to-libc. Since 1997, researchers have been committed
to contrast CRA by devising defense techniques.

Among the various techniques developed over the years
to contrast CRA, one of the most effective is control-flow
integrity (CFI). CFl aims to ensure that a process’s exe-
cution flow always corresponds to the legal one specified
at compile time. CFI is undoubtedly a powerful technique
but is still scarcely applicable in practical scenarios, mainly
due to the large overhead it requires to be implemented to
ensure a complete CFI enforcement in any possible execution

e U L Tt RO DR

FPUUE USRS TS R I

PISA

THANK YOU. QUESTIONS?

Gabriele Serra
- gabriele.serra@santannapisa.it
- gabrieleserra.ml

mailto:gabriele.serra@santannapisa.i
https://gabrieleserra.ml/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

