
FPGA-Accelerated Non-Volatile Memory Access
Yussuf Khalil

uyebg@student.kit.edu
Karlsruhe Institute of

Technology

Thorsten
Gröninger

groeninger@kit.edu
Karlsruhe Institute of

Technology

Lukas Werling
lukas.werling@kit.edu
Karlsruhe Institute of

Technology

Frank Bellosa
bellosa@kit.edu

Karlsruhe Institute of
Technology

ABSTRACT
Intel recently introcuded Optane Persistent Memory (PMem),
a byte-addressable non-volatile memory that is attached di-
rectly to the processor’s memory bus and thereby allows
access with traditional load/store instructions. This model
enables very low latency, but can have severe performance
deficits in practice. In particular, synchronous write accesses
can lead to CPU stalls [5] and leave less CPU time for other
storage processing tasks (e.g., file systems, compression, en-
cryption) and even completely unrelated CPU-bound pro-
cesses [4].
We propose mediating access to PMem using an FPGA-

based PCIe device. This way, we can preserve low latencies
while also freeing the CPU from certain storage processing
tasks. Notably, in our system setup, the Optane memory is
connected directly to the FPGA instead of the CPU’s memory
controller. In the future, we plan to move away from PCIe in
favor of the upcoming CXL.mem protocol [3].

As a first step, we implement asynchronous copy offloading,
which is a mechanism for overcoming performance issues
from write stalls [4]. Our design features SR-IOV support
and a custom low-latency MMU tailored for the typical large
sizes of Optane modules. The accompanying Linux driver
provides user applications with a memcpy()-style interface
that allows for parallelized submission of copy tasks without
runtime overhead for locks or system calls.

1 ASYNCHRONOUS COPY OFFLOADING
The idea behind asynchronous copy offloading is to have the
actual copy operations done by periphery hardware, i.e., not
by the CPU itself. This concept is asynchronous by nature:
if it were synchronous, there would be no benefit as the
CPU would have to wait for the periphery hardware (which,
in turn, waits for the memory) instead of waiting for the
memory directly. By being asynchronous it is possible to
let the CPU do other work after it has submitted a copy
command. For this approach to be successful, the command
submission must be faster than the time that would be spent
waiting. In turn, it is imperative to make the submission
process as quick as possible. At the same time, in order to be
sensible for practical applications, the implementation must
be able to saturate the memory’s bandwidth to its fullest,

while also providing short latencies. These goals guide the
design of our approach.

2 DESIGN OVERVIEW
In essence, we aim to co-design specialized hardware and
software to implement asynchronous copy offloading for
PMem. To this end, we employ an FPGA and connect it to
the base system via PCI Express. Now, if the PMem modules
were to be part of the system’s main memory, all copied data
would need to travel through the PCIe bus twice, once for
reading and a second time for writing. As we aim for mini-
mal latency, we connect the Optane memory to the FPGA
directly instead. Via SR-IOV, our design allows to configure
a pair of ring buffers to be used as command queues for read
(FPGA → system memory) and write (system memory →
FPGA) operations per each virtual function (VF). User pro-
cesses may allocate an arbitrary number of VFs from our
kernel driver, and thereby, an arbitrary amount of command
queues to enable lock-free parallel submission. This further
allows processes to directly notify the hardware about new
commands by writing to a bell register specific to each VF.
Otherwise, we would have to employ polling (costly in terms
of latency and wasted bandwidth) or system calls (that cause
further overhead) for proper isolation.
Given that Optane modules are sold in sizes of up to

512GiB [1] and that PMem is typically used by only very
few applications in a system, we opted for a MMU design
with linear page tables and 16GiB pages. One page table per
VF is stored in local SRAM on the FPGA. Our implementa-
tion guarantees address translations to be completed within
a single clock cycle without having a TLB. Page tables are
managed by our kernel driver and processes may allocate
pages via a system call.
We offer a library that encapsulates all necessary func-

tionality to user applications and provides them with what
is essentially an asynchronous memcpy(). A single system
call is still necessary the first time a page in system memory
is referenced in order to establish an IOMMU mapping. This
issue may be alleviated in the future when CPUs supporting
Shared Virtual Memory become available [2].



Yussuf Khalil, Thorsten Gröninger, Lukas Werling, and Frank Bellosa

REFERENCES
[1] Intel Corporation. 2022. Intel® optane™ persistent memory (pmem).

(Aug. 27, 2022). https://www.intel.com/content/www/us/en/products
/details/memory-storage/optane-dc-persistent-memory.html.

[2] Intel Corporation. 2022. Intel® virtualization technology for directed
i/o architecture specification. (June 2022). https://www.intel.com/con
tent/www/us/en/content-details/671081/intel-virtualization-techno
logy-for-directed-i-o-architecture-specification.html.

[3] Debendra Das Sharma and Siamak Tavallaei. 2020. Compute express
link 2.0 white paper. Tech. Rep.

[4] Lukas Werling, Christian Schwarz, and Frank Bellosa. 2021. Towards
less cpu-intensive pmem file systems. (Sept. 21, 2021). https://www.b
etriebssysteme.org/wp-content/uploads/2021/09/FGBS_Herbst2021
_Folien_Werling.pdf.

[5] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. 2020. An empirical guide to the behavior and use of
scalable persistent memory. In 18th USENIX Conference on File and
Storage Technologies (FAST 20), 169–182.

https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/content-details/671081/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671081/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671081/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.betriebssysteme.org/wp-content/uploads/2021/09/FGBS_Herbst2021_Folien_Werling.pdf
https://www.betriebssysteme.org/wp-content/uploads/2021/09/FGBS_Herbst2021_Folien_Werling.pdf
https://www.betriebssysteme.org/wp-content/uploads/2021/09/FGBS_Herbst2021_Folien_Werling.pdf

	Abstract
	1 Asynchronous Copy Offloading
	2 Design Overview

