
Efficient and Scalable Core Multiplexing with M3v
Nils Asmussen, Sebastian Haas, Carsten Weinhold, Till Miemietz, Michael Roitzsch

Barkhausen Institut, Dresden, Germany

Core

Core or
Accelerator

App

Kernel
Core

M³

AppApp

Kernel

Core

Core

Mux

AppApp

MuxKernel

DTU

M³x M³v

DTU DTU

DTU DTU vDTU

Core or
Accelerator

Figure 1: Tile multiplexing on M3 (no multiplexing),
M3x (all tiles can be multiplexed using a single central-
ized OS tile), and M3v (general-purpose tiles can mul-
tiplex themselves).

M3 [1] is a hardware/software co-design that ad-
dresses the trend towards increasingly heterogeneous
systems. It is based on a tiled hardware architecture
and allows users to easily utilize general-purpose cores
and special-purpose accelerators in a unified manner.
Communication between tiles is achieved with a cus-
tom per-tile hardware component called data transfer
unit (DTU). The DTU provides a uniform interface to
all tiles, which simplifies heterogeneous systems. Ad-
ditionally, the DTU isolates tiles from each other, be-
cause cross-tile communication is denied by default.
Communication channels between tiles are set up by
the M3 kernel, which runs on a dedicated OS tile. Af-
ter the setup, applications can communicate directly
via their DTU, bypassing the kernel. Therefore, we call
such communication fast-path communication.
As depicted in Figure 1 (left), M3 does not support

tile multiplexing and is therefore limited to one appli-
cation per tile. The inability to multiplex tiles inhibits
tile utilization when applications are occasionally idle.
Multiplexing tiles among multiple applications there-
fore enables increased tile utilization. One reason that
M3 is limited to one application per tile is that tile mul-
tiplexing impedes fast-path communication: the OS is
responsible for tile multiplexing, but the goal of fast-
path communication is to bypass the OS. For example,
if an application is waiting for an incoming message,
the OS needs to suspend the application to allow for-
ward progress for other applications on the same tile.
Later, the OS needs to resume the suspended applica-
tion upon message arrival.
M3x [2] resolved this challenge in a manner that al-

lows for multiplexing of both general-purpose cores

and special-purpose accelerators. With M3x, the kernel
performs all context switches on all tiles in the system
remotely, as illustrated in Figure 1 (middle). Namely,
the kernel is responsible for scheduling decisions, asks
other tiles to save or restore their state, and switches
between contexts. M3x retains fast-path communica-
tion if the recipient is running, but otherwise resorts
to slow-path communication, which redirects the com-
munication over the kernel. When two applications
share a tile and cause frequent slow-path communica-
tion, M3x suffered from performance problems.
In this talk, we introduce M3 and then focus on

M3v [3], a new core-multiplexing approach for the M3
system that replaces the general mechanism of M3x
by a specific one for general-purpose cores. We trade
some of the isolation and generality of M3x for im-
proved efficiency. As sketched in Figure 1 (right), our
design is based on 1) a core-local software multiplexer,
which performs context switches on this core without
involving the kernel on the OS tile and on 2) hardware
virtualization of the DTU (vDTU ). In contrast to the
previous M3 prototypes that were simulated, we built a
hardware FPGA-based implementation ofM3 including
our core-multiplexing support. In the evaluation, we
compare to M3x in simulation using a context-switch
heavy workload, showing a two-fold performance im-
provement and almost linear scalability up to 12 tiles
for M3v, whereas M3x does not scale to two tiles. Addi-
tionally, we evaluate the performance of M3v in com-
parison to Linux on an FPGA platform, showing that
M3v is competitive with single and multiple applica-
tions per core.

References
[1] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Här-

tig, and Gerhard Fettweis. M3: A hardware/operating-system
co-design to tame heterogeneous manycores. International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 189–203. ACM,
2016.

[2] Nils Asmussen, Michael Roitzsch, and Hermann Härtig. M3x:
autonomous accelerators via context-enabled fast-path com-
munication. USENIX Annual Technical Conference (ATC),
pages 617–632. USENIX, 2019

[3] Nils Asmussen, Sebastian Haas, Carsten Weinhold, Till
Miemietz, and Michael Roitzsch. Efficient and Scalable Core
Multiplexing with M3v. International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS), pages 452–466. ACM, 2022


