Optimization of Communication-bound Applications

Theresa Werner, Ivo Kabadshow, Matthias Werner

August 26, 2022

Introduction

With the current development of increasing node numbers in High Performance Computing (HPC) and the problem that HPC applications become communication-bound, there is a need for optimized communication. We specialize in the field of Molecular Dynamics Simulations (MDS) and in specific on short-range particle interactions. One of three approaches in MDS is to distribute the simulation space over the computation nodes; this is called spatial decomposition. Since we focus on range-limited interaction, this leaves us to optimize "range-limited" communication between nodes, so communication between nodes that hold adjoining regions of the simulation space.

Conducting a Systematic Literature Review (SLR) [4] we found two promising communication algorithms, the Shift [3] (see Fig.1) and the Team Shift [2]. In order to compare these two methods formally, we aim to define a formal model of both.

Results

So far, we followed an approach with timed-transitions Petri nets and the $(\max,+)$ algebra [1]. It allows to observe the time behavior of one of the nodes and how it is influenced by its neighbors' timing. From here we want to see if there is a way to fold the Petri nets and use time-afflicted tokens. This would allow a global view on the timing of the whole network.

Figure 1: Shift communication [3]: The data of the blue box is first distributed along the x-dimension, then by help of its neighbors along the y-dimension and last along the z-dimension.

References

- [1] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat. Synchronization and Linearity, An Algebra for Discrete Event Systems. 1992.
- [2] Michael Driscoll, Evangelos Georganas, Penporn Koanantakool, Edgar Solomonik, and Katherine Yelick. A Communication-Optimal N-Body Algorithm for Direct Interactions. In 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, pages 1075–1084, 2013.
- [3] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. *Journal of Computational Physics*, 117(1):1–19, 1995.
- [4] Theresa Werner, Ivo Kabadshow, and Matthias Werner. Systematic literature review of data exchange strategies for range-limited particle interactions. In Proceedings of the 12th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pages 218–225, 2022.