
Realms:
Lock-free Object Access in Multi-threaded Execution
Environments

20. September 2022

Manuel Fischer, Christian Eichler, Henriette Hofmeier, Timo Hönig
manuel.fischer@rub.de

Bochum Operating Systems and System Software (BOSS)
Ruhr-Universität Bochum

mailto:manuel.fischer@rub.de


Introduction: Thread Safety Validation

Problem: Thread safety validation
at runtime di�cult

Usage Scenario: porting sequencial code
to multithreaded code

Goals: Lock free object access
Minimal/no synchronization
Lightweight thread safety validation at runtime
Tool to reliable detect access conflicts

Approach: Thread safety system based on new concept realms
Zero cost abstraction: overhead only for debugging

1



Table of Contents

1. Thread Safety Validation

2. Threading Model

3. Realms

4. Realm Operations

5. Implementation

6. Conclusion

2



Threading Model



Hierarchical Thread Execution

threads
join from

parent thread

x

time

Hierarchical thread execution
child threads terminate before parents

3



Hierarchical Thread Execution

threads
join from

other thread

x
detach

x

time

Problematic thread execution
overlapping lifetimes: dangling pointers

4



Hierarchical Thread Execution

threads
join from

other thread

x
detach

x

time

Problematic thread execution
overlapping lifetimes: dangling pointers

5



Threading Model

Main Thread

Compute Thread Compute Thread ··· Output Thread

Producer Consumer

Main Thread

Producer Consumer

Compute Thread Compute Thread Output ThreadCompute Thread Compute Thread Output Thread

Consider child threads as parts of parent threads

6



Functional Thread Execution

threads

x

timeMultiple simultaneous child threads
Parent thread waiting/no side e�ects on its realm
Only side e�ect of child threads: computing a result
Result: value, object graph or transaction
Result processed in parent thread after all parallel threads
completed

7



Realms



Realms

©
Ro

be
rt

Hu
rt

,N
AS

A/
JP

L-
Ca

lte
ch

No modifications of unsynchronized objects can escape a realm

What? Set of objects with same ‘origin’ (thread or function call)
Restricted environment

Where? Multi threading, restricted code execution,
compile time bytecode evaluation

Why? Detect & prevent modifying objects associated
to a realm that is not the currently executed one

8



Hierarchical Realms: Object Graphs

a b c

d e f

g h i

Main Realm

Producer Consumer

Compute
Realm

Compute
Realm

Output
Realm

Objects referring to other objects in other realms
Leaf realms: active realms

9



Hierarchical Realms: Object Graphs

a b c

d e f

g h i

Main Realm

Producer Consumer

Compute
Realm

Compute
Realm

Output
Realm

Invalid: References to child realm and cross references
Impossible if only leaf realms are modifyable

10



Realm Operations



Splitting Realms

Why?

Create child realm
Modify existing objects in place
Split work among threads

When?

Threads: Before creation of threads
Function call: Before function call

How?

Reassociate objects with new realm
Ensure objects in new realm are not reachable from original
realm anymore

1. Keep objects in realm or copy objects, if still reachable
2. Hide or remove references to objects moved to the child real

a a

b b

11



Resolving Realms

Splitting realms resolving realms

Why?

Continue parent realm
References to child realm from
parent realm

When?

Threads: after join in parent thread
Function call: after function returned

How?

1. Reassociate objects with parent realm
2. Update reference counters of parent realm objects referred to

from child realm (Only count references inside a realm:
no synchronization of reference counter)

a a

b b

12



Synchronization

Where? Queues, synchronized variables (l)
Why? Shared mutable state, communication between threads
How? Reassociate object graph (v) with other realm

consider references into v

Acquire: Queue pop, mutex lock

l l

v

v

Release: Queue push, mutex unlock

l l l

v or v’

v v

no copy deep copy
if no other if multiple

reference to v references to vinaccessible locked reference
unlocked state: objects in v/v’ only reachable through l

13



Implementation



Implementation

Object

-realm : RealmID
-refcount : Int

···

···

thread_local RealmID current_realm;

shared Object* alloc_object()
{

Object* p = malloc(...);
p->realm = current_realm;
return p;

}

const Object* get_read(shared Object* p) {
return p;

}

Object* get_write(shared Object* p) {
assert(p->realm == current_realm);
return p;

}
14



Example Error Cases

void my_thread(shared queue* q) {
shared element* e = pop_synchronized(q);
destroy_queue(get_write(q)); // runtime error

get_write(e)->name = "Alice"; // ok

begin_realm(); // could split realm here
puts(get_read(e)->name); // ok
get_write(e)->name = "Bob"; // runtime error
destroy_element(get_write(e)); // runtime error

end_realm();

get_write(e)->name = "Charlie"; // use after free
// destruction of e should happen here

}

15



Conclusion



Conclusion

Goals: Strict runtime thread safety validation using realms

Approach: Realms as optional light debugging or safety feature
Avoiding data races by hierarchical threading model

Result: Many access conflicts detectable with realms
Not just useful for multi-threading: restricted execution

Implementation: gitlab.rub.de/realms/realms-cpp
16

https://gitlab.rub.de/realms/realms-cpp


Appendix



Example Pseudocode: Output Thread

void consumer_thread(shared output_context* args) {
begin_realm(); // consumer realm

int output_flags = get_read(args)->output_flags;
get_write(args)->output_flags |= 2; // error

shared result* r;
while(r = pop_result(ctx->queue)) {

get_write(r)->sum /= get_read(r)->count; // ok

begin_realm(); // output realm
...
destroy_result(get_write(r)); // error

end_realm();
// destruction should happen here instead

}
end_realm();

}

17



Example Pseudocode: Output Thread

struct output_context {
realm_id realm;

int output_flags;
shared result_queue* queue;

};

struct result {
realm_id realm;

int count;
double sum;

};

void destroy_result(result* r);

18



Garbage Collection

Usual Problem: Synchronization of reference counter

Solution: Only count references inside own realm,
excluding child realms

Explanation: Possible because if child realms refer to an
object, a reference must already exist in the
realm, used to get a reference to the object

Result: No locking necessary
Generally: any GC-algorithm per realm

more e�cient

19



Reference Counting

void inc_ref(shared Object* obj) {
if(!obj) return; // null guard
if(obj->realm != current_realm) return; // realm guard

obj->refcount++;
}

void dec_ref(shared Object* obj) {
if(!obj) return; // null guard
if(obj->realm != current_realm) return; // realm guard

obj->refcount--;
if(obj->refcount == 0) destroy_object(obj);

}

20



Realm Creation

void begin_realm() {
current_realm++;

}

void end_realm() {
current_realm--;

}

21



4 Phase Thread Execution

Enable simultaneous thread execution:

1. Argument allocation, realm creation
2. Thread starting, realm activation
3. Thread joining
4. Result collection, realm resolution

22


	Thread Safety Validation
	Threading Model
	Realms
	Realm Operations
	Implementation
	Conclusion
	Appendix

