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Blocking Applications

If the current app waits for new messages, other apps should get the chance to run

Applications fetch new messages directly from the vDTU

If there is none and other apps are ready, TileMux is used to block
Race condition: checking for new msgs and blocking (like lost-wakeup problem)

The vDTU tracks the number of new messages of the current app
The priv. IF offers a command to atomically switch to a new app
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Unblocking Applications

M3x

Incoming messages cannot be stored in memory, if the receiver is blocked

The receive EP is not available

M3x resorts to a “slow-path” by forwarding messages over the OS tile

M3v

The vDTU knows all EPs and can always store the message

If the owner of the receive EP is blocked, the vDTU injects an interrupt

TileMux marks the receiver as ready

Best case: neither the OS tile nor TileMux is involved in the communication
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vDTU Size and Complexity

LUTs [k] FFs [k] BRAMs
BOOM 143.8 71.8 159
Rocket 46.6 22.0 152
NoC router 3.4 2.2 0
vDTU 15.2 5.8 0.5
Control Unit 10.3 3.3 0.5
NoC CTRL 3.2 1.5 0
CMD CTRL 7.1 2.8 0.5
Unpriv. IF 6.2 2.5 0.5
Priv. IF 0.9 0.3 0

Register file 2.0 1.0 0
Memory mapper + PMP 0.6 0.2 0
I/O FIFOs 2.3 0.3 0
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CMD CTRL 7.1 2.8 0.5
Unpriv. IF 6.2 2.5 0.5
Priv. IF 0.9 0.3 0

Register file 2.0 1.0 0
Memory mapper + PMP 0.6 0.2 0
I/O FIFOs 2.3 0.3 0
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Performance Comparison with Linux

LevelDB receives requests from remote machine and sends result back
Requests generated with YCSB; different shares of read/insert/update/scan
Single BOOM core runs: LevelDB, pager, filesystem, network stack
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Conclusion

M3 explores a new system architecture with a new per-tile hardware component

M3v shows how general-purpose cores can be multiplexed efficiently

Hardware implementation demonstrates modest additional hardware costs

Competitive performance to Linux with context-switch-heavy workloads

The complete hardware/software stack is available as open source:
https://github.com/Barkhausen-Institut/M3
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Microbenchmarks: IPC and Context Switches

Linux yield (2x)
Linux syscall
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Microbenchmarks: File System

Throughput (MiB/s)

Linux write
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Microbenchmarks: Networking

Latency (µs)
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Macrobenchmarks: YCSB
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Comparison with M3x: OS-tile utilization
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Hardware Implementation
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