
barkhauseninstitut.org

Efficient and Scalable Core Multiplexing with M3v

Nils Asmussen, Sebastian Haas, Carsten Weinhold, Till Miemietz, Michael Roitzsch

Fachgruppentreffen, Erlangen, 19.09.2022

M3 System Architecture [1]

Core

Core

Core

GPU

FPGA

TPU

DTU

DTU

DTU

DTU

DTU

DTU

App

OS

App

App

App

App Key ideas:

DTU as new hardware
component

Tiles are isolated by default

OS on dedicated tile

Fast-path communication

sh $ decode in.png | fft | mul | ifft > out.raw

Software Hardware accelerators for
image processing

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016 2 / 14

M3 System Architecture [1]

Core

Core

Core

GPU

FPGA

TPU

DTU

DTU

DTU

DTU

DTU

DTU

App

OS

App

App

App

App

Key ideas:

DTU as new hardware
component

Tiles are isolated by default

OS on dedicated tile

Fast-path communication

sh $ decode in.png | fft | mul | ifft > out.raw

Software Hardware accelerators for
image processing

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016 2 / 14

M3 System Architecture [1]

Core

Core

Core

GPU

FPGA

TPU

DTU

DTU

DTU

DTU

DTU

DTU

App

OS

App

App

App

App

Key ideas:

DTU as new hardware
component

Tiles are isolated by default

OS on dedicated tile

Fast-path communication

sh $ decode in.png | fft | mul | ifft > out.raw

Software Hardware accelerators for
image processing

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016 2 / 14

M3 System Architecture [1]

Core

Core

Core

GPU

FPGA

TPU

DTU

DTU

DTU

DTU

DTU

DTU

App

OS

App

App

App

App

Key ideas:

DTU as new hardware
component

Tiles are isolated by default

OS on dedicated tile

Fast-path communication

sh $ decode in.png | fft | mul | ifft > out.raw

Software Hardware accelerators for
image processing

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016 2 / 14

M3 System Architecture [1]

Core

Core

Core

GPU

FPGA

TPU

DTU

DTU

DTU

DTU

DTU

DTU

App

OS

App

App

App

App Key ideas:

DTU as new hardware
component

Tiles are isolated by default

OS on dedicated tile

Fast-path communication

sh $ decode in.png | fft | mul | ifft > out.raw

Software Hardware accelerators for
image processing

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016 2 / 14

M3 System Architecture [1]

Core

Core

Core

GPU

FPGA

TPU

DTU

DTU

DTU

DTU

DTU

DTU

App

OS

App

App

App

App Key ideas:

DTU as new hardware
component

Tiles are isolated by default

OS on dedicated tile

Fast-path communication

sh $ decode in.png | fft | mul | ifft > out.raw

Software Hardware accelerators for
image processing

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016 2 / 14

M3 System Architecture [1]

Core

Core

Core

GPU

FPGA

TPU

DTU

DTU

DTU

DTU

DTU

DTU

App

OS

App

App

App

App Key ideas:

DTU as new hardware
component

Tiles are isolated by default

OS on dedicated tile

Fast-path communication

sh $ decode in.png | fft | mul | ifft > out.raw

Software Hardware accelerators for
image processing

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016 2 / 14

Comparison of Core Multiplexing Approaches

M3 (ASPLOS’16)

DTU

DTU

Core

OS

Core/Accel

App

M3x (ATC’19)

DTU

DTU

Core

OS
Mux

Core/Accel

App1 App2

M3v (this work)

vDTU

DTU

Core

OS

Core

App1 App2

TileMux

3 / 14

Comparison of Core Multiplexing Approaches

M3 (ASPLOS’16)

DTU

DTU

Core

OS

Core/Accel

App

M3x (ATC’19)

DTU

DTU

Core

OS
Mux

Core/Accel

App1 App2

M3v (this work)

vDTU

DTU

Core

OS

Core

App1 App2

TileMux

3 / 14

Comparison of Core Multiplexing Approaches

M3 (ASPLOS’16)

DTU

DTU

Core

OS

Core/Accel

App

M3x (ATC’19)

DTU

DTU

Core

OS
Mux

Core/Accel

App1 App2

M3v (this work)

vDTU

DTU

Core

OS

Core

App1 App2

TileMux

3 / 14

Core Multiplexing vs Fast-Path Communication

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

App2

App1

App3 Suspend App1 until new
message, schedule App2

Resume App1 upon new
message

Multiplexing conflicts with
fast-path communication

4 / 14

Core Multiplexing vs Fast-Path Communication

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

App2

App1

App3

Suspend App1 until new
message, schedule App2

Resume App1 upon new
message

Multiplexing conflicts with
fast-path communication

4 / 14

Core Multiplexing vs Fast-Path Communication

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

App2

App1

App3

Suspend App1 until new
message, schedule App2

Resume App1 upon new
message

Multiplexing conflicts with
fast-path communication

4 / 14

Core Multiplexing vs Fast-Path Communication

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

App2

App1

App3 Suspend App1 until new
message, schedule App2

Resume App1 upon new
message

Multiplexing conflicts with
fast-path communication

4 / 14

Core Multiplexing vs Fast-Path Communication

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

App2

App1

App3 Suspend App1 until new
message, schedule App2

Resume App1 upon new
message

Multiplexing conflicts with
fast-path communication

4 / 14

Core Multiplexing vs Fast-Path Communication

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

App2

App1

App3 Suspend App1 until new
message, schedule App2

Resume App1 upon new
message

Multiplexing conflicts with
fast-path communication

4 / 14

Strong Isolation between Tiles

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

OS

App1 App2

TileMux

vDTU

5 / 14

Strong Isolation between Tiles

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

OS

App1 App2

TileMux

vDTU

5 / 14

Strong Isolation between Tiles

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

OS

App1 App2

TileMux

vDTU

Only the OS can provide
access to tile-external
resources

Restoring DTU state
provides access to all
resources

TileMuxmust not restore
DTU state!

5 / 14

Strong Isolation between Tiles

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

OS

App1 App2

TileMux

vDTU

Only the OS can provide
access to tile-external
resources

Restoring DTU state
provides access to all
resources

TileMuxmust not restore
DTU state!

5 / 14

Strong Isolation between Tiles

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

OS

App1 App2

TileMux

vDTU

Only the OS can provide
access to tile-external
resources

Restoring DTU state
provides access to all
resources

TileMuxmust not restore
DTU state!

5 / 14

Strong Isolation between Tiles

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

OS

App1 App2

TileMux

vDTU

Only the OS can provide
access to tile-external
resources

Restoring DTU state
provides access to all
resources

TileMuxmust not restore
DTU state!

5 / 14

Strong Isolation between Tiles

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

OS

App1 App2

TileMux

vDTU

M3* provides better
isolation than conventional
architectures

M3x and M3v trade some
isolation for better resource
utilization

M3v trades some more
isolation for better
efficiency

5 / 14

Strong Isolation between Tiles

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

OS

App1 App2

TileMux

vDTU

M3* provides better
isolation than conventional
architectures

M3x and M3v trade some
isolation for better resource
utilization

M3v trades some more
isolation for better
efficiency

5 / 14

Strong Isolation between Tiles

App

OS

App

App

App

App

DTU

DTU

DTU

DTU

DTU

DTU

OS

App1 App2

TileMux

vDTU

M3* provides better
isolation than conventional
architectures

M3x and M3v trade some
isolation for better resource
utilization

M3v trades some more
isolation for better
efficiency

5 / 14

Virtualization of the DTU

vDTU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFAppApp2

App3

App1

Priv. IF TileMux

S R

6 / 14

Virtualization of the DTU

vDTU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFAppApp2

App3

App1

Priv. IF TileMux

S R

6 / 14

Virtualization of the DTU

vDTU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFAppApp2

App3

App1

Priv. IF TileMux

S R

6 / 14

Virtualization of the DTU

vDTU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFAppApp2

App3

App1

Priv. IF TileMux

S R

6 / 14

Virtualization of the DTU

vDTU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFApp

App2

App3

App1

Priv. IF TileMux

S R

6 / 14

Virtualization of the DTU

vDTU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFAppApp2

App3

App1

Priv. IF TileMux

S R

6 / 14

Virtualization of the DTU

vDTU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFAppApp2

App3

App1

Priv. IF TileMux

S R

6 / 14

Virtualization of the DTU

vDTU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFAppApp2

App3

App1

Priv. IF TileMux

S R

6 / 14

Blocking Applications

If the current app waits for new messages, other apps should get the chance to run

Applications fetch new messages directly from the vDTU

If there is none and other apps are ready, TileMux is used to block
Race condition: checking for new msgs and blocking (like lost-wakeup problem)

The vDTU tracks the number of new messages of the current app
The priv. IF offers a command to atomically switch to a new app

7 / 14

Blocking Applications

If the current app waits for new messages, other apps should get the chance to run

Applications fetch new messages directly from the vDTU

If there is none and other apps are ready, TileMux is used to block
Race condition: checking for new msgs and blocking (like lost-wakeup problem)

The vDTU tracks the number of new messages of the current app
The priv. IF offers a command to atomically switch to a new app

7 / 14

Blocking Applications

If the current app waits for new messages, other apps should get the chance to run

Applications fetch new messages directly from the vDTU

If there is none and other apps are ready, TileMux is used to block

Race condition: checking for new msgs and blocking (like lost-wakeup problem)

The vDTU tracks the number of new messages of the current app
The priv. IF offers a command to atomically switch to a new app

7 / 14

Blocking Applications

If the current app waits for new messages, other apps should get the chance to run

Applications fetch new messages directly from the vDTU

If there is none and other apps are ready, TileMux is used to block
Race condition: checking for new msgs and blocking (like lost-wakeup problem)

The vDTU tracks the number of new messages of the current app
The priv. IF offers a command to atomically switch to a new app

7 / 14

Blocking Applications

If the current app waits for new messages, other apps should get the chance to run

Applications fetch new messages directly from the vDTU

If there is none and other apps are ready, TileMux is used to block
Race condition: checking for new msgs and blocking (like lost-wakeup problem)

The vDTU tracks the number of new messages of the current app

The priv. IF offers a command to atomically switch to a new app

7 / 14

Blocking Applications

If the current app waits for new messages, other apps should get the chance to run

Applications fetch new messages directly from the vDTU

If there is none and other apps are ready, TileMux is used to block
Race condition: checking for new msgs and blocking (like lost-wakeup problem)

The vDTU tracks the number of new messages of the current app
The priv. IF offers a command to atomically switch to a new app

7 / 14

Unblocking Applications

M3x

Incoming messages cannot be stored in memory, if the receiver is blocked

The receive EP is not available

M3x resorts to a “slow-path” by forwarding messages over the OS tile

M3v

The vDTU knows all EPs and can always store the message

If the owner of the receive EP is blocked, the vDTU injects an interrupt

TileMux marks the receiver as ready

Best case: neither the OS tile nor TileMux is involved in the communication

8 / 14

Unblocking Applications

M3x

Incoming messages cannot be stored in memory, if the receiver is blocked

The receive EP is not available

M3x resorts to a “slow-path” by forwarding messages over the OS tile

M3v

The vDTU knows all EPs and can always store the message

If the owner of the receive EP is blocked, the vDTU injects an interrupt

TileMux marks the receiver as ready

Best case: neither the OS tile nor TileMux is involved in the communication

8 / 14

Unblocking Applications

M3x

Incoming messages cannot be stored in memory, if the receiver is blocked

The receive EP is not available

M3x resorts to a “slow-path” by forwarding messages over the OS tile

M3v

The vDTU knows all EPs and can always store the message

If the owner of the receive EP is blocked, the vDTU injects an interrupt

TileMux marks the receiver as ready

Best case: neither the OS tile nor TileMux is involved in the communication

8 / 14

Unblocking Applications

M3x

Incoming messages cannot be stored in memory, if the receiver is blocked

The receive EP is not available

M3x resorts to a “slow-path” by forwarding messages over the OS tile

M3v

The vDTU knows all EPs and can always store the message

If the owner of the receive EP is blocked, the vDTU injects an interrupt

TileMux marks the receiver as ready

Best case: neither the OS tile nor TileMux is involved in the communication

8 / 14

Unblocking Applications

M3x

Incoming messages cannot be stored in memory, if the receiver is blocked

The receive EP is not available

M3x resorts to a “slow-path” by forwarding messages over the OS tile

M3v

The vDTU knows all EPs and can always store the message

If the owner of the receive EP is blocked, the vDTU injects an interrupt

TileMux marks the receiver as ready

Best case: neither the OS tile nor TileMux is involved in the communication

8 / 14

Unblocking Applications

M3x

Incoming messages cannot be stored in memory, if the receiver is blocked

The receive EP is not available

M3x resorts to a “slow-path” by forwarding messages over the OS tile

M3v

The vDTU knows all EPs and can always store the message

If the owner of the receive EP is blocked, the vDTU injects an interrupt

TileMux marks the receiver as ready

Best case: neither the OS tile nor TileMux is involved in the communication

8 / 14

Unblocking Applications

M3x

Incoming messages cannot be stored in memory, if the receiver is blocked

The receive EP is not available

M3x resorts to a “slow-path” by forwarding messages over the OS tile

M3v

The vDTU knows all EPs and can always store the message

If the owner of the receive EP is blocked, the vDTU injects an interrupt

TileMux marks the receiver as ready

Best case: neither the OS tile nor TileMux is involved in the communication

8 / 14

Performance/Scalability Comparison with M3x

Setup: gem5 simulator, 3 GHz out-of-order x86-64 cores
Every tile runs: SQLite/find benchmark and in-memory filesystem

1

0

40

80

120

9 / 14

Performance/Scalability Comparison with M3x

Setup: gem5 simulator, 3 GHz out-of-order x86-64 cores
Every tile runs: SQLite/find benchmark and in-memory filesystem

T
h
ro

u
g
h
p
u
t
(r

u
n
s
/s

)

of tiles
1 2 3 4 5 6 7 8 9 10 11 12

0

300

600

900

1200

 M³x find M³x SQLite M³v find M³v SQLite

1

0

40

80

120

9 / 14

Performance/Scalability Comparison with M3x

Setup: gem5 simulator, 3 GHz out-of-order x86-64 cores
Every tile runs: SQLite/find benchmark and in-memory filesystem

T
h
ro

u
g
h
p
u
t
(r

u
n
s
/s

)

of tiles
1 2 3 4 5 6 7 8 9 10 11 12

0

300

600

900

1200

 M³x find M³x SQLite M³v find M³v SQLite

1

0

40

80

120

9 / 14

Performance/Scalability Comparison with M3x

Setup: gem5 simulator, 3 GHz out-of-order x86-64 cores
Every tile runs: SQLite/find benchmark and in-memory filesystem

T
h
ro

u
g
h
p
u
t
(r

u
n
s
/s

)

of tiles
1 2 3 4 5 6 7 8 9 10 11 12

0

300

600

900

1200

 M³x find M³x SQLite M³v find M³v SQLite

1

0

40

80

120

9 / 14

Performance/Scalability Comparison with M3x

Setup: gem5 simulator, 3 GHz out-of-order x86-64 cores
Every tile runs: SQLite/find benchmark and in-memory filesystem

T
h
ro

u
g
h
p
u
t
(r

u
n
s
/s

)

of tiles
1 2 3 4 5 6 7 8 9 10 11 12

0

300

600

900

1200

 M³x find M³x SQLite M³v find M³v SQLite

1

0

40

80

120

9 / 14

Performance/Scalability Comparison with M3x

Setup: gem5 simulator, 3 GHz out-of-order x86-64 cores
Every tile runs: SQLite/find benchmark and in-memory filesystem

T
h
ro

u
g
h
p
u
t
(r

u
n
s
/s

)

of tiles
1 2 3 4 5 6 7 8 9 10 11 12

0

300

600

900

1200

 M³x find M³x SQLite M³v find M³v SQLite

1

0

40

80

120

9 / 14

Hardware Implementation

10 / 14

Hardware Implementation

RISC-V
vDTU

R R

R R

RISC-V
vDTU

RISC-V
vDTU

UDP/IP

DTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

DDR4 IF
DTU

DDR4 IF
DTU

NIC

DRAM

Gbit Ethernet
DRAM

Debug IF

Xilinx VCU118 FPGA

RISC-V: in-order Rocket
or out-of-order BOOM

Rocket at 100 MHz,
BOOM at 80 MHz

2x16 kB L1, 512 kB L2

vDTU contains 128 EPs

11 / 14

Hardware Implementation

RISC-V
vDTU

R R

R R

RISC-V
vDTU

RISC-V
vDTU

UDP/IP
DTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

DDR4 IF
DTU

DDR4 IF
DTU

NIC

DRAM

Gbit Ethernet
DRAM

Debug IF

Xilinx VCU118 FPGA

RISC-V: in-order Rocket
or out-of-order BOOM

Rocket at 100 MHz,
BOOM at 80 MHz

2x16 kB L1, 512 kB L2

vDTU contains 128 EPs

11 / 14

Hardware Implementation

RISC-V
vDTU

R R

R R

RISC-V
vDTU

RISC-V
vDTU

UDP/IP
DTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

DDR4 IF
DTU

DDR4 IF
DTU

NIC

DRAM

Gbit Ethernet
DRAM

Debug IF

Xilinx VCU118 FPGA

RISC-V: in-order Rocket
or out-of-order BOOM

Rocket at 100 MHz,
BOOM at 80 MHz

2x16 kB L1, 512 kB L2

vDTU contains 128 EPs

11 / 14

Hardware Implementation

RISC-V
vDTU

R R

R R

RISC-V
vDTU

RISC-V
vDTU

UDP/IP
DTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

DDR4 IF
DTU

DDR4 IF
DTU

NIC

DRAM

Gbit Ethernet
DRAM

Debug IF

Xilinx VCU118 FPGA

RISC-V: in-order Rocket
or out-of-order BOOM

Rocket at 100 MHz,
BOOM at 80 MHz

2x16 kB L1, 512 kB L2

vDTU contains 128 EPs

11 / 14

Hardware Implementation

RISC-V
vDTU

R R

R R

RISC-V
vDTU

RISC-V
vDTU

UDP/IP
DTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

DDR4 IF
DTU

DDR4 IF
DTU

NIC

DRAM

Gbit Ethernet
DRAM

Debug IF

Xilinx VCU118 FPGA

RISC-V: in-order Rocket
or out-of-order BOOM

Rocket at 100 MHz,
BOOM at 80 MHz

2x16 kB L1, 512 kB L2

vDTU contains 128 EPs

11 / 14

Hardware Implementation

RISC-V
vDTU

R R

R R

RISC-V
vDTU

RISC-V
vDTU

UDP/IP

DTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

DDR4 IF
DTU

DDR4 IF
DTU

NIC

DRAM

Gbit Ethernet
DRAM

Debug IF

Xilinx VCU118 FPGA

RISC-V: in-order Rocket
or out-of-order BOOM

Rocket at 100 MHz,
BOOM at 80 MHz

2x16 kB L1, 512 kB L2

vDTU contains 128 EPs

11 / 14

vDTU Size and Complexity

LUTs [k] FFs [k] BRAMs
BOOM 143.8 71.8 159
Rocket 46.6 22.0 152
NoC router 3.4 2.2 0
vDTU 15.2 5.8 0.5
Control Unit 10.3 3.3 0.5
NoC CTRL 3.2 1.5 0
CMD CTRL 7.1 2.8 0.5
Unpriv. IF 6.2 2.5 0.5
Priv. IF 0.9 0.3 0

Register file 2.0 1.0 0
Memory mapper + PMP 0.6 0.2 0
I/O FIFOs 2.3 0.3 0

12 / 14

vDTU Size and Complexity

LUTs [k] FFs [k] BRAMs
BOOM 143.8 71.8 159
Rocket 46.6 22.0 152
NoC router 3.4 2.2 0
vDTU 15.2 5.8 0.5
Control Unit 10.3 3.3 0.5
NoC CTRL 3.2 1.5 0
CMD CTRL 7.1 2.8 0.5
Unpriv. IF 6.2 2.5 0.5
Priv. IF 0.9 0.3 0

Register file 2.0 1.0 0
Memory mapper + PMP 0.6 0.2 0
I/O FIFOs 2.3 0.3 0

12 / 14

vDTU Size and Complexity

LUTs [k] FFs [k] BRAMs
BOOM 143.8 71.8 159
Rocket 46.6 22.0 152
NoC router 3.4 2.2 0
vDTU 15.2 5.8 0.5
Control Unit 10.3 3.3 0.5
NoC CTRL 3.2 1.5 0
CMD CTRL 7.1 2.8 0.5
Unpriv. IF 6.2 2.5 0.5
Priv. IF 0.9 0.3 0

Register file 2.0 1.0 0
Memory mapper + PMP 0.6 0.2 0
I/O FIFOs 2.3 0.3 0

12 / 14

vDTU Size and Complexity

LUTs [k] FFs [k] BRAMs
BOOM 143.8 71.8 159
Rocket 46.6 22.0 152
NoC router 3.4 2.2 0
vDTU 15.2 5.8 0.5
Control Unit 10.3 3.3 0.5
NoC CTRL 3.2 1.5 0
CMD CTRL 7.1 2.8 0.5
Unpriv. IF 6.2 2.5 0.5
Priv. IF 0.9 0.3 0

Register file 2.0 1.0 0
Memory mapper + PMP 0.6 0.2 0
I/O FIFOs 2.3 0.3 0

12 / 14

Performance Comparison with Linux

LevelDB receives requests from remote machine and sends result back
Requests generated with YCSB; different shares of read/insert/update/scan
Single BOOM core runs: LevelDB, pager, filesystem, network stack

13 / 14

Performance Comparison with Linux

LevelDB receives requests from remote machine and sends result back
Requests generated with YCSB; different shares of read/insert/update/scan
Single BOOM core runs: LevelDB, pager, filesystem, network stack

M
³v

L
in

u
x

Read

0

1

2

3

4

5

T
im

e
 (

s
)

M
³v

L
in

u
x

Insert

M
³v

L
in

u
x

Update

M
³v

L
in

u
x

Mixed

M
³v

L
in

u
x

Scan

0

10

20

30

13 / 14

Performance Comparison with Linux

LevelDB receives requests from remote machine and sends result back
Requests generated with YCSB; different shares of read/insert/update/scan
Single BOOM core runs: LevelDB, pager, filesystem, network stack

M
³v

L
in

u
x

Read

0

1

2

3

4

5

T
im

e
 (

s
)

M
³v

L
in

u
x

Insert

M
³v

L
in

u
x

Update

M
³v

L
in

u
x

Mixed

M
³v

L
in

u
x

Scan

0

10

20

30

13 / 14

Conclusion

M3 explores a new system architecture with a new per-tile hardware component

M3v shows how general-purpose cores can be multiplexed efficiently

Hardware implementation demonstrates modest additional hardware costs

Competitive performance to Linux with context-switch-heavy workloads

The complete hardware/software stack is available as open source:
https://github.com/Barkhausen-Institut/M3

14 / 14

https://github.com/Barkhausen-Institut/M3

Backup Slides

15 / 14

Microbenchmarks: IPC and Context Switches

Linux yield (2x)
Linux syscall

M³v local
M³v remote

0 25 50 75 100
Duration (µs)

0 2 4 6 8
Duration (K Cycles)

16 / 14

Microbenchmarks: File System

Throughput (MiB/s)

Linux write
Linux read

M³v write (shared)
M³v write (isolated)
M³v read (shared)

M³v read (isolated)

0 50 100 150 200 250

17 / 14

Microbenchmarks: Networking

Latency (µs)

Linux
M³v (shared)

M³v (isolated)

0 200 400 600 800

18 / 14

Macrobenchmarks: YCSB

M
³v

 (
is

o
la

te
d

)

M
³v

 (
s
h

a
re

d
)

L
in

u
x

Read

0

1

2

3

4

5
T

im
e

 (
s
)

M
³v

 (
is

o
la

te
d

)

M
³v

 (
s
h

a
re

d
)

L
in

u
x

Insert

M
³v

 (
is

o
la

te
d

)

M
³v

 (
s
h

a
re

d
)

L
in

u
x

Update

M
³v

 (
is

o
la

te
d

)

M
³v

 (
s
h

a
re

d
)

L
in

u
x

Mixed

M
³v

 (
is

o
la

te
d

)

M
³v

 (
s
h

a
re

d
)

L
in

u
x

Scan

0

10

20

30User System

19 / 14

Comparison with M3x: OS-tile utilization
T

h
ro

u
g

h
p

u
t

(r
u

n
s
/s

)

of tiles
2 4 6 8 10 12

0

300

600

900

1200

 M³x find
 M³x SQLite
 M³v find
 M³v SQLite

O
S

−
ti
le

 u
ti
l.
 (

%
)

of tiles
2 4 6 8 10 12

0

25

50

75

100

 M³x find
 M³x SQLite
 M³v find
 M³v SQLite

20 / 14

Hardware Implementation

Register File

Control Unit

CMD
CTRL

NoC
CTRLNoC

vDTU to Cache

Unpriv. Cmds

Unpriv.
RegsEndpoints

Memory
Mapper

Priv. Cmds

Priv.
Regs

I/O FIFOs

Core MMIO

PMPCore Mem

21 / 14

	Appendix

