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About This Lecture

Operating System 7→ multiplexing and isolation of hardware
by means of hardware virtualization

Virtual hardware is represented by the OS’s basic abstractions: Example UNIX

This lecture:
We mostly focus on basic OS-
internal memory management.

But of course, the area and
problem is bigger...

...and in the end, its also a lot
about contention.
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6 OS Challenges for Modern Memory Systems

6.1 Virtualizing Memory – A Short Recap
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Recap: Physical and Virtual Address Space

Physical address space Ap  all hardware addresses
defined by the hardware manufactor (OEM)

contains memory-mapped hardware devices
and all physical memory (RAM, ROM, NVRAM)

 main memory

Virtual address space Av  all software addresses (for some process p)
defined by the operating system

containes memory-mapped files and all
code and data of the programm running in p

OS dynamically maps logical addresses to physical addresses  isolation
and (optionally) also backing store: p : Al 7→ Ap ∨ BS .  multiplexing

 (virtual) working memory of process p
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Recap: Memory Virtualization

Virtual addresses generated by process p are translated
transparently via an OS-controlled process-specific mapping p : Av 7−→ Ap
mapping is done „on access“ by the MMU (memory management unit)

Segmentation: Mapping of objects of arbitrary size,
linearly stored in both, Av and Ap .  [18]

Leads to external fragmentation.

Av  (virtual addresses) Ap  (physical addresses)

mapping

MMVM

Fundamental principle of demand paging OS can do lots of thing lazily.
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Recap: Memory Virtualization

Fundamental principle of demand paging provide RAM only implicitly.
Delay provision of page frames until actually needed. Unified buffer cache: [11]

The 4 KiB page frame has become the defacto
entity for everything!Implicitly share page frames as long as possible.

Transfer page frames instead of data (zero copy).

Textbook examples

fork() and the mighty
copy-on-write (COW)

Implicit sharing of other
objects, like file-mapped binaries.

Data transfer by page-level
zero copy, also from devices.

↪→ Save on the scarce and expensive physical memory and avoid/delay costly copy operations.

cd,dl (WSOS’23) 6 OS Challenges for Modern Memory Systems | 6.1 Virtualizing Memory – A Short Recap 6–7

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04



Recap: Memory Virtualization

Fundamental principle of demand paging provide RAM only implicitly.
Delay provision of page frames until actually needed. Unified buffer cache: [11]

The 4 KiB page frame has become the defacto
entity for everything!Implicitly share page frames as long as possible.

Transfer page frames instead of data (zero copy).

Textbook examples

Av  (parent) Ap  

1

1

1

1

libc

write bit

fork() and the mighty
copy-on-write (COW)

Implicit sharing of other
objects, like file-mapped binaries.

Data transfer by page-level
zero copy, also from devices.

↪→ Save on the scarce and expensive physical memory and avoid/delay costly copy operations.

cd,dl (WSOS’23) 6 OS Challenges for Modern Memory Systems | 6.1 Virtualizing Memory – A Short Recap 6–7

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04



Recap: Memory Virtualization

Fundamental principle of demand paging provide RAM only implicitly.
Delay provision of page frames until actually needed. Unified buffer cache: [11]

The 4 KiB page frame has become the defacto
entity for everything!Implicitly share page frames as long as possible.

Transfer page frames instead of data (zero copy).

Textbook examples

Av  (parent) Ap  Av  (child)

0

0

0

0

0

0

0

0

libc

write bit write bit

fork() and the mighty
copy-on-write (COW)

Implicit sharing of other
objects, like file-mapped binaries.

Data transfer by page-level
zero copy, also from devices.

↪→ Save on the scarce and expensive physical memory and avoid/delay costly copy operations.

cd,dl (WSOS’23) 6 OS Challenges for Modern Memory Systems | 6.1 Virtualizing Memory – A Short Recap 6–7

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04



Recap: Memory Virtualization

Fundamental principle of demand paging provide RAM only implicitly.
Delay provision of page frames until actually needed. Unified buffer cache: [11]

The 4 KiB page frame has become the defacto
entity for everything!Implicitly share page frames as long as possible.

Transfer page frames instead of data (zero copy).

Textbook examples

Av  (parent) Ap  Av  (child)

1

0

0

0

1

0

0

0

COW

libc

fork() and the mighty
copy-on-write (COW)

Implicit sharing of other
objects, like file-mapped binaries.

Data transfer by page-level
zero copy, also from devices.

↪→ Save on the scarce and expensive physical memory and avoid/delay costly copy operations.

cd,dl (WSOS’23) 6 OS Challenges for Modern Memory Systems | 6.1 Virtualizing Memory – A Short Recap 6–7

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04



Recap: Memory Virtualization

Fundamental principle of demand paging provide RAM only implicitly.
Delay provision of page frames until actually needed. Unified buffer cache: [11]

The 4 KiB page frame has become the defacto
entity for everything!Implicitly share page frames as long as possible.

Transfer page frames instead of data (zero copy).

Textbook examples

Av  (parent)

libc

Ap  Av  (child)

1

0

0

0

1

0

0

0

COW

Av  (other)libc

0

0

fork() and the mighty
copy-on-write (COW)

Implicit sharing of other
objects, like file-mapped binaries.

Data transfer by page-level
zero copy, also from devices.

↪→ Save on the scarce and expensive physical memory and avoid/delay costly copy operations.

cd,dl (WSOS’23) 6 OS Challenges for Modern Memory Systems | 6.1 Virtualizing Memory – A Short Recap 6–7

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04



Recap: Memory Virtualization

Fundamental principle of demand paging provide RAM only implicitly.
Delay provision of page frames until actually needed. Unified buffer cache: [11]

The 4 KiB page frame has become the defacto
entity for everything!Implicitly share page frames as long as possible.

Transfer page frames instead of data (zero copy).

Textbook examples

Av  (parent)

libc

Ap  Av  (child)

1

0

0

0

1

0

0

0

COW

Av  (other)libc

0

0

fork() and the mighty
copy-on-write (COW)

Implicit sharing of other
objects, like file-mapped binaries.

Data transfer by page-level
zero copy, also from devices.

↪→ Save on the scarce and expensive physical memory and avoid/delay costly copy operations.

cd,dl (WSOS’23) 6 OS Challenges for Modern Memory Systems | 6.1 Virtualizing Memory – A Short Recap 6–7

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04



Recap: Memory Virtualization

Fundamental principle of demand paging provide RAM only implicitly.
Delay provision of page frames until actually needed. Unified buffer cache: [11]

The 4 KiB page frame has become the defacto
entity for everything!Implicitly share page frames as long as possible.

Transfer page frames instead of data (zero copy).

Textbook examples

Av  (parent)

libc

Ap  Av  (child)

1

0

0

0

1

0

0

0

COW

Av  (other)libc

0

0

fork() and the mighty
copy-on-write (COW)

Implicit sharing of other
objects, like file-mapped binaries.

Data transfer by page-level
zero copy, also from devices.

↪→ Save on the scarce and expensive physical memory and avoid/delay costly copy operations.

cd,dl (WSOS’23) 6 OS Challenges for Modern Memory Systems | 6.1 Virtualizing Memory – A Short Recap 6–7

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04



Problem 1: The Cost of Sharing

Sharing demands extensive OS-internal bookkeeping
Object-specific virtual←→ physical mappings, lots of reference counting.
Nested COW-relationships make things even more complicated.

Example: Linux

libc

Actually needed by the HW (MMU)

Excerpt from Linux’s
Memory Management

Lots of doubly-linked lists
and lookup trees  locks.

Additional struct page
(64B) per page frame.
(not shown)
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Problem 1: The Cost of Sharing Scalability of Frame Allocation in Linux

Example: Linux frame allocation Linux 6.0 on Xeon(R) Gold 5320: 2 × 26 physical cores @ 2.20 GHz, 256/512 GiB DRAM/NVRAM per node

1 8 16 26
Threads

0

500

1000

Av
g.

 ti
m

e 
(n

s)

Frames

1 8 16 26
Threads

0

20000

40000

60000

Huge Frames

Operation
alloc
free

Problem: Complex OS-internal bookkeeping hinders scalability
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What is Needed by the HW – Intel 5-Level Paging

Virtual
Address Space

Normal PagesNormal Pages Huge PagesHuge Pages Morsel MorselNormal Pages Huge Pages Morsel
Physical
Address Space

For brevity, we show only
2 of 512 entries per level.

128 PiB VAS would require
256 TiB of page-table data!

Normal pages: can be placed everywhere
Huge pages: reduce table overhead and TLB pressure

Problem: External fragmentation is back :-(
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For brevity, we show only
2 of 512 entries per level.

Luckily, the tables can be
sparsely populated.

Normal pages: can be placed everywhere, but the management overhead might differ.
Huge pages: reduce table overhead and TLB pressure, but require alignment.

Problem: External fragmentation is back :-(
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Problem 2: External Fragmentation (Again)

Problem: External fragmentation is back :-(

Example: Linux frame allocation Linux 6.0 on Xeon(R) Gold 5320: 2 × 26 physical cores @ 2.20 GHz, 256/512 GiB DRAM/NVRAM per node
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6 OS Challenges for Modern Memory Systems

6.2 Hardware Developments

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04



Hardware Developments: Overview

CPU 0

MMU 0

DRAM

Disk
DMA

CPU 1

MMU 1

HBM

NVRAM

Ca
ch

es

PCIe
IO

M
M

U GPU
SSD

RDMA

Rack

PDP-11 Model: Single CPU is Queen of the system
One virtual address space, secondary storage is separate
Direct memory access is an optimization for I/O

Current Reality: More Memory / Users / Interconnects
Deep cache hierarchy of shared coherent CPU caches
Multiple cores with separate MMUs with non-coherent TLBs
Memory Types with different latencies and properties

PCIe is the interconnect standard
SSDs provide fast random block access
Remote DMA provides access to the PCIe bus

peripheral memory access via IOMMU but w/o coherency
Accelerators are more efficient than the CPU
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Hardware Developments: Cache Hierarchy, NUMA

The Memory hierarchy becomes deeper
Example: Intel Xeon Gold 5320 (Random Read Access)

Caches 1.6 ns (L1), 6 ns (L2), 21 ns (L3)
RAM Local: 95 ns, Remote: 155 ns
Other Optane: 170-305 ns[23]

RDMA: 600 ns (@200G)

Problem: “Your computer is already
a distributed system” [3]

Compute eXpress Link is a PCIe Protocol
Use PCIe as inter-machine interconnect
CXL.mem: NUMA-like latencies for remote memory
CXL.cache: devices with cache coherency
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Problem 3: The Memory Hierarchy is a Network

The Memory hierarchy becomes deeper
Example: Intel Xeon Gold 5320 (Random Read Access)

Caches 1.6 ns (L1), 6 ns (L2), 21 ns (L3)
RAM Local: 95 ns, Remote: 155 ns
Other Optane: 170-305 ns[23]

RDMA: 600 ns (@200G)

Problem: “Your computer is already
a distributed system” [3]

Compute eXpress Link is a PCIe Protocol
Use PCIe as inter-machine interconnect
CXL.mem: NUMA-like latencies for remote memory
CXL.cache: devices with cache coherency
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Multi-Core: NUMA-aware Spinlocks (1)

MCS-Lock: A Fair, NUMA-oblivious Spinlock
Idea: waiter queue, local spinning
Standard lock for Linux (replaced test-and-test)
Everybody spins on its own cache line

0
spin link

Th-A

⊥

tail=

Shared State: tail-pointer

lock(): Enqueue themselves via CAS-operation
Wait: Threads poll local cache line
unlock(): next->spin=0, 1 cache-line transfer

Traditional spinlocks are problematic on NUMA
Common Wisdom: „Locks should be FIFO!“
FIFO ensures fairness and avoids starvation
But: Lock-holder bounces between NUMA sockets

LLC Miss Ratio on 4 Sockets

lower 
is better

MCS
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Multi-Core: NUMA-aware Spinlocks (2)

MCS-Lock: A Fair, NUMA-oblivious Spinlock
Idea: waiter queue, local spinning
Standard lock for Linux (replaced test-and-test)
Everybody spins on its own cache line

CNA-Lock: Compact NUMA-aware Spinlock [7]
Idea: prefer waiters on local NUMA node
Lock-holder has a queue of non-local waiters
Become unfair in favor of performance

A 0 E 0A 0

B 1

C 1

D 1

E 1
poll

poll

poll

poll

Enqueue works like MCS lock
unlock() move remote waiters into 2nd queue

Secondary queue is passed on
No local waiters, switch NUMA node
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Multi-Core: NUMA-aware Spinlocks (3)

MCS-Lock: A Fair, NUMA-oblivious Spinlock
Idea: waiter queue, local spinning

CNA-Lock: Compact NUMA-aware Spinlock
Idea: prefer waiters on local NUMA node

Both Locks solve Memory Problems!

LLC Miss Ratio on 4 Sockets

lower 
is better

MCS

CNA

„Thundering-Herd Problem“
TAS: Invalidate shared cache line ⇒ (n-1) misses
MCS: Unlock provokes exactly one cache miss
Principle: Shared memory is 1-to-N communication

Keep N small!
NUMA-Aware Programming

MCS: Protected state bounces between sockets
CNA: Lock sticks to NUMA socket
Principle: Keep control flow where the cached data
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Hardware Developments (2)

Sun 33 (1990) Xeon 5320 (2022) Factor

CPU 1× @33Mhz, 10-11 MIPS 2×28 @2-3 GHz, 100k MIPS 1000
TLB/Thr. 64 Entries 132 L1 + 1500 L2 25

L1D: Size 256 B 64 KiB 256
Latency1 180ns 1 ns 180

RAM: Size ≤ 128MiB ≤ 3 TiB 25000
Latency1 210 ns 100 ns 2
Read (1MiB) 1 3200 us 3 us 1000
Bandwidth 200MiB/s 120 GiB/s [20] 600

Network (Read 2 KiB)1 1448 us 16 ns 90500
Disk (Read 1MiB)1 640ms 825 us / 125 us (SSD) 775 / 5000

1Typical from https://colin-scott.github.io/personal_website/research/interactive_latency.html

Problem: Memory has become abundant, but latencies and TLB are killers!
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Problem 4: Designed for Scarcity, Not for Latency
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The Physical Memory (PM) is Huge

The physical memory is 25k× larger!
1 Gib ∧

= 512 huge frames ∧
= 262K frames

The Sun 33 (1990) had 32K frames

Challenge: Meta-Data Overhead
struct page stores 64 B metadata per frame
1 GiB ∧

= 16MiB of meta-data
Linux spends 1.56% of its DRAM for this!

Multiple Frame Sizes
Huge frames extend the TLB reach.
Using huge frames save on page tables.

Challenge: Allocation Policy
When to allocate which granularity?
Huge frames are worse for Copy-on-Write
Support for existing software!
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Transparent Huge Pages

VM

2 MiB (aligned)

PM

h fstruct
page

Page-Number Indexed

h: huge frame
f: free frame

r: reserved
a: alloced

Should the OS map 4 KiB Frame or 2MiB Frame?
+ 4 KiB: Less memory, faster copy (CoW) Break even:

70 4 KiB pages
+ 2MiB: TLB pressure, less faults

Transparent Huge Pages [15, 17]: Why not both?
Idea: Start with 4 KiB and upgrade to 2MiB lateron.
First fault: reserve 2MiB but map only 4 KiB

Individual faults up to a threshold (e.g., <50%)
Upgrade to 2MiB Mapping

Linux: struct page-Array for 2MiB Mappings
512 × struct page (64b) ∧

= 32 KiB ∧
= 8 frames

Idea: Map the first frame 7 more times
Save 28 KiB per 2MiB mapping (1.36% of all DRAM!)
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Transparent Huge Pages
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Page-Number Indexed

h: huge frame
f: free frame
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4 KiB 7× mapping

Should the OS map 4 KiB Frame or 2MiB Frame?
+ 4 KiB: Less memory, faster copy (CoW) Break even:

70 4 KiB pages
+ 2MiB: TLB pressure, less faults
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Individual faults up to a threshold (e.g., <50%)
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Transparent Huge Pages

VM

2 MiB (aligned)

PM
huge page

ha a a a ha a a astruct
page

Page-Number Indexed

h: huge frame
f: free frame

r: reserved
a: alloced

4 KiB 7× mapping

Problem: This is a Memory-Scarce Design!

Should the OS map 4 KiB Frame or 2MiB Frame?
+ 4 KiB: Less memory, faster copy (CoW) Break even:

70 4 KiB pages
+ 2MiB: TLB pressure, less faults

Transparent Huge Pages [15, 17]: Why not both?
Idea: Start with 4 KiB and upgrade to 2MiB lateron.
First fault: reserve 2MiB but map only 4 KiB
Individual faults up to a threshold (e.g., <50%)
Upgrade to 2MiB Mapping

Linux: struct page-Array for 2MiB Mappings
512 × struct page (64b) ∧

= 32 KiB ∧
= 8 frames

Idea: Map the first frame 7 more times
Save 28 KiB per 2MiB mapping (1.36% of all DRAM!)
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Translation Look-Aside Buffer

TLB: The Last Non-Coherent Cache
Each CPU caches the slow page-table walk
Huge Impact (5-Levels): 600 ns vs 1 ns
The OS must invalidate entries on remote cores!
Optimized variant [2]: 3400 – 4300 cycles

Principle: Shootdown should be a rare event
Batching: Combine multiple independent shootdowns
Semantics: Avoid shootdowns by weakening guarantees
Both are problematic with existing software
Hard to implement them correct

Problem: Fixing Hardware in Software
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Translation Look-Aside Buffer

TLB: The Last Non-Coherent Cache
Each CPU caches the slow page-table walk
Huge Impact (5-Levels): 600 ns vs 1 ns
The OS must invalidate entries on remote cores!
Optimized variant [2]: 3400 – 4300 cycles

Principle: Shootdown should be a rare event
Batching: Combine multiple independent shootdowns
Semantics: Avoid shootdowns by weakening guarantees
Both are problematic with existing software
Hard to implement them correct

Problem: Fixing Hardware in Software

Initiator Remote

Broadcast (IPI) ISR
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Translation Look-Aside Buffer

TLB: The Last Non-Coherent Cache
Each CPU caches the slow page-table walk
Huge Impact (5-Levels): 600 ns vs 1 ns
The OS must invalidate entries on remote cores!
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Translation Look-Aside Buffer

TLB: The Last Non-Coherent Cache
Each CPU caches the slow page-table walk
Huge Impact (5-Levels): 600 ns vs 1 ns
The OS must invalidate entries on remote cores!
Optimized variant [2]: 3400 – 4300 cycles

Principle: Shootdown should be a rare event
Batching: Combine multiple independent shootdowns
Semantics: Avoid shootdowns by weakening guarantees
Both are problematic with existing software
Hard to implement them correct

Problem: Fixing Hardware in Software

Initiator Remote

Broadcast (IPI) ISR

T
LB

 F
lush

Early ACK (SHM)
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Translation Look-Aside Buffer

TLB: The Last Non-Coherent Cache
Each CPU caches the slow page-table walk
Huge Impact (5-Levels): 600 ns vs 1 ns
The OS must invalidate entries on remote cores!
Optimized variant [2]: 3400 – 4300 cycles

Principle: Shootdown should be a rare event
Batching: Combine multiple independent shootdowns
Semantics: Avoid shootdowns by weakening guarantees
Both are problematic with existing software
Hard to implement them correct

Problem: Fixing Hardware in Software

Initiator Remote

Broadcast (IPI) ISR

T
LB

 F
lush

Early ACK (SHM)

Wait for
Cores
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Translation Look-Aside Buffer
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Problem 5: Software must fix Broken Hardware

TLB: The Last Non-Coherent Cache
Each CPU caches the slow page-table walk
Huge Impact (5-Levels): 600 ns vs 1 ns
The OS must invalidate entries on remote cores!
Optimized variant [2]: 3400 – 4300 cycles

Principle: Shootdown should be a rare event
Batching: Combine multiple independent shootdowns
Semantics: Avoid shootdowns by weakening guarantees
Both are problematic with existing software
Hard to implement them correct

Problem: Fixing Hardware in Software

Initiator Remote

Broadcast (IPI) ISR

T
LB

 F
lush

Early ACK (SHM)

Wait for
Cores

T
LB

 F
lush
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Hardware Development: Secondary Storage

Medium Capacity Sequential Read 4K IOP/S € / 1 TB

Seagate Savvio 15K.2 (HDD, 2009) 146 GB 160 MB/s 204 2 000 €
Seagate Exos 2x14 (HDD, 2021) 14 TB 524 MB/s 304 27 €

Intel X25-E (SSD, 2009) 32 GB 250 MB/s 35 000 21 800 €
Samsung PM1735 (SSD, 2019) 12.8 TB 8000 MB/s 1 500 000 340 €

SSDs will replace HDDs

SSDs are large and cheap (enough).
Small penalty for random (PM1735: 6 GiB/s)
Multi-million IOP/s if queues are deep enough

Problem: Designed for Slow I/O

„Nothing matters if you have to query the disk.“
A page fault provokes only one small disk read.
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Problem 6: Designed for Slow and Sequential I/O

Medium Capacity Sequential Read 4K IOP/S € / 1 TB

Seagate Savvio 15K.2 (HDD, 2009) 146 GB 160 MB/s 204 2 000 €
Seagate Exos 2x14 (HDD, 2021) 14 TB 524 MB/s 304 27 €

Intel X25-E (SSD, 2009) 32 GB 250 MB/s 35 000 21 800 €
Samsung PM1735 (SSD, 2019) 12.8 TB 8000 MB/s 1 500 000 340 €

SSDs will replace HDDs

SSDs are large and cheap (enough).
Small penalty for random (PM1735: 6 GiB/s)
Multi-million IOP/s if queues are deep enough

Problem: Designed for Slow I/O

„Nothing matters if you have to query the disk.“
A page fault provokes only one small disk read.
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6 OS Challenges for Modern Memory Systems

6.3 ParPerOS – Contention-Avoiding
Design

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04



Linux: Virtual Memory Page Allocation

0 20 40 60 80 100 120
Threads

0M

1M

2M

3M

4M

5M
4K

 A
llo

c+
Fr

ee
 [1

/s
]

15.01 38.99 78.51

0.03

0.08

0.15

TLB Shootdowns/OP

1.58M IOP/s (PM1733)

m(un)map
madvise
process_madv. (orig.)
process_madv. (fix.)

Linux 5.16, AMD EPYC 7713 processor (64 cores, 128 hardware threads), 512 GB RAM

Problem: Designed for Slow I/O

Benchmark: Alloc/Free 4 KiB Pages Randomly
Random I/O requires random VM operations
Allocate page via page fault
Free page via MADV_DONTNEED or munmap()

munmap(2)

Modifies the global memory-object list.
Memory objects are split and merged

madvise(2)

Modify only the page tables
One TLB Shootdown per eviction!

process_madvise(2)

Vectorized madvise(2)

One TLB shootdown per 512 pages.
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ExMap: File-Mapped IO for High-Performance SSDs [16]

P0 P1 P2 P3 P4 P5 P6 P7 Virtual Address Space

T0 T1 T2 T3

Page Tables
SSD

T0 T1 T2 T3

PtMap VMA∗

pn len
mIOV VMA∗

7 1
5 2
3 1

address

Local Bundle
⊥

Global Bundle List∗

pop bundle

pop
page

w
rite

back

back
fill

Surface VMA

Explicit File-Mapped I/O
No page-faults, no automatic write-back
Vectorized surface operations (alloc/free)
Lock-free page-table modifications

Principles
Forbid slow-I/O paths
Vectorized operations
Use CPU atomics
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ExMap: File-Mapped IO for High-Performance SSDs [16]

P0 P1 P2 P3 P4 P5 P6 P7 Virtual Address Space

T0 T1 T2 T3

Page Tables
SSD

T0 T1 T2 T3

PtMap VMA∗

pn len
mIOV VMA∗

7 1
5 2
3 1

address

Local Bundle
⊥

Global Bundle List∗

pop bundle

pop
page

w
rite

back

back
fill

Surface VMA

Process-Local Frame Pool
Avoids zeroing without leak
Lock-free global bundle list
CPU-local bundles (513 frames)

Principles
Memory-abundant design!
Limited global communication
Cache-friendly data structures
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ExMap: File-Mapped IO for High-Performance SSDs [16]

P0 P1 P2 P3 P4 P5 P6 P7 Virtual Address Space

T0 T1 T2 T3

Page Tables
SSD

T0 T1 T2 T3

PtMap VMA∗

pn len
mIOV VMA∗

7 1
5 2
3 1

address

Local Bundle
⊥

Global Bundle List∗

pop bundle

pop
page

w
rite

back

back
fill

Surface VMA

Memory-Mapped IO Vector
Pre-mapped parameter vector
Page number (52 bits), length (12 bits)
Avoids copy_from_user() checks

Principles
Re-use loaded cache lines
Dense special-purpose encoding
Memory as communication interface
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ExMap: File-Mapped IO for High-Performance SSDs [16]

P0 P1 P2 P3 P4 P5 P6 P7 Virtual Address Space

T0 T1 T2 T3

Page Tables
SSD

T0 T1 T2 T3

PtMap VMA∗

pn len
mIOV VMA∗

7 1
5 2
3 1

address

Local Bundle
⊥

Global Bundle List∗

pop bundle

pop
page

w
rite

back

back
fill

Surface VMA

Exported Page Tables
Read-only mapping
In-core information
Cache line is also used by MMU

Principles
Expose hardware specifics
Controlled isolation violations
Re-use loaded cache lines
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ExMap: Virtual Memory Allocation Performance

0 32 64 96 128
0

100

200

300

400

4K
 A

llo
ca

tio
ns

 [1
e6

/s
]

Sequential Pattern

0 32 64 96 128
Allocator Threads [#]

Random Pattern

Free Strategy
local
mixed
remote

ExMap: 100M – 200M Random allocations per second
Linux: 5M Random allocations per second (with fixes)
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Challenge: Contention in the Memory Subsystem

Contention

Frame Allocator

Memory Subsystem
MemoryCPU

↪→ Crucial to avoid contention from the very beginning!
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Challenge: Contention in the Memory Subsystem

Contention

Frame Allocator

Memory Subsystem

Huge Frames Fragmentation

MemoryCPU

↪→ Crucial to avoid contention from the very beginning!
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Challenge: Contention in the Memory Subsystem

Contention

Frame Allocator

Memory Subsystem

Huge Frames Fragmentation

Large memoryMany CPUs

↪→ Crucial to avoid contention from the very beginning!
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Challenge: Contention in the Memory Subsystem

Contention

Frame Allocator

Memory Subsystem
Persistent

Huge Frames Fragmentation

Large and diverse
memory

HBM

DRAM

NMC

RDMA

Many processing
elements

CPU

NUMA

Accelerator

RDMA

NMC

↪→ Crucial to avoid contention from the very beginning!
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How to Avoid Contention?

Principles
Do not use locks. Use atomics.

CAS, FAA, LL/SC, ...
This has a lot of implications on data structures.
And even more on NVM. [5, 10, 13, 14, 21]

Respect your hardware. Especially the cache.
Well known, but still ignored. [8, 12, 22]
Performance is dominated by the number n of cache lines accessed: cla = n
And even more, if cache lines are shared!

Avoid true and false sharing. Partition your ressources.
Cache trashing is a major bottleneck. [4]
Global resource pools require locks.
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LLFree – A Fast and Optionally Persistent Frame Allocator

CPU 0

cU r
r
r
r
r
r
r

r

cU
cU
cU
cU
cU
cU

cU

cL a
a

a

cL

cL

64 MiB Trees
2 MiB Children 4 KiB Bit Fields

(Persistent on NVRAM)

512 bit (512 frames)
(= 64 B cache line)

Upper Level Lower Level

10 + 1 bit
(2 B aligned)

(32 · 2 B = 64 B)

15 + 1 bit
(2 B aligned)

Flag

Free frames counter

Reservedr
Tree reservationt

Start PFN

Allocateda

s

c

In treeU

In bit fieldL

In preferred treeP

Last frees countercF

Last frees tree indexi

CPU 1 cL a
a

a

cL

cL

- Preferred tree
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cF i
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cP t s
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Goal: Efficient management of physical memory.
De/allocation of normal (4 KiB) and huge (2MiB) frames.

Goal: Optional crash consistency on NVRAM.
Allocation state survives sudden power loss.
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LLFree – Architecture

4 KiB Bit Fields

512 bit (512 frames)
(= 64 B cache line)

Flag

Free frames counter

Reservedr
Tree reservationt

Start PFN

Allocateda

s

c

In treeU

In bit fieldL

In preferred treeP

Last frees countercF

Last frees tree indexi

1 Bit per 4 KiB frame:
1 7→ taken
0 7→ free

Each entry represents a 2MiB frame

Cache-friendly design: 512 normal frames are managed within a single cache line.
4 KiB alloc: find first 0-bit in entry, set it to 1

 very fast, if there is a 0-bit cla = 1

2MiB alloc: find entry with 512 free frames, set cL = 0 and a = 1
 ignore bit field cla = 2
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LLFree – Architecture
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2 MiB Children 4 KiB Bit Fields

512 bit (512 frames)
(= 64 B cache line)

10 + 1 bit
(2 B aligned)

(32 · 2 B = 64 B)

Flag

Free frames counter

Reservedr
Tree reservationt

Start PFN

Allocateda

s

c

In treeU

In bit fieldL

In preferred treeP

Last frees countercF

Last frees tree indexi

cL a
a

a

cL

cL

1 Bit per 4 KiB frame:
1 7→ taken
0 7→ free

Each entry represents a 2MiB frame

Counter: Number of free 4 KiB frames

Cache-friendly design: 512 normal frames are managed within a single cache line.
4 KiB alloc: find entry with cL > 0, decrement cL , find first 0-bit in entry, set it to 1

 there is a 0 bit cla = 2

2MiB alloc: find entry with 512 free frames, set cL = 0 and a = 1
 ignore bit field cla = 2
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LLFree – Architecture
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2 MiB Children 4 KiB Bit Fields

512 bit (512 frames)
(= 64 B cache line)

10 + 1 bit
(2 B aligned)

(32 · 2 B = 64 B)

Flag

Free frames counter

Reservedr
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Start PFN

Allocateda

s

c

In treeU

In bit fieldL

In preferred treeP

Last frees countercF

Last frees tree indexi

cL a
a

a

cL

cL

Each entry represents a 2MiB frame

Counter: Number of free 4 KiB frames 1 if entry is taken as huge frame

Cache-friendly design: 512 normal frames are managed within a single cache line.
4 KiB alloc: find entry with cL > 0, decrement cL , find first 0-bit in entry, set it to 1

 there is a 0 bit cla = 2
2MiB alloc: find entry with 512 free frames, set cL = 0 and a = 1

 ignore bit field cla = 1
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LLFree – Architecture

CPU 0

cU r
r
r
r
r
r
r

r

cU
cU
cU
cU
cU
cU

cU

cL a
a

a

cL

cL

64 MiB Trees
2 MiB Children 4 KiB Bit Fields

(Persistent on NVRAM)

512 bit (512 frames)
(= 64 B cache line)

Upper Level Lower Level

10 + 1 bit
(2 B aligned)

(32 · 2 B = 64 B)

15 + 1 bit
(2 B aligned)

Flag

Free frames counter

Reservedr
Tree reservationt

Start PFN

Allocateda

s

c

In treeU

In bit fieldL

In preferred treeP

Last frees countercF

Last frees tree indexi

CPU 1 cL a
a

a

cL

cL

- Preferred tree
cP t s

cF i
- Last frees

- Preferred tree
cP t s

cF i
- Last frees

Counter: Number of free 4 KiB frames

Cache-friendly design: 512 normal frames are managed within a single cache line.
4 KiB alloc: find entry with cL > 0, decrement cL and cU , find first 0-bit in entry, set it to 1

 there is a 0 bit cla = 3
2MiB alloc: find entry with 512 free frames, set cL = 0 and a = 1, decrement cU

 ignore bit field cla = 2
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LLFree – Architecture

CPU 0

cU r
r
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r
r
r

r

cU
cU
cU
cU
cU
cU

cU

cL a
a

a

cL

cL

64 MiB Trees
2 MiB Children 4 KiB Bit Fields

(Persistent on NVRAM)

512 bit (512 frames)
(= 64 B cache line)

Upper Level Lower Level

10 + 1 bit
(2 B aligned)

(32 · 2 B = 64 B)

15 + 1 bit
(2 B aligned)

Flag

Free frames counter

Reservedr
Tree reservationt

Start PFN

Allocateda

s

c

In treeU

In bit fieldL

In preferred treeP

Last frees countercF

Last frees tree indexi

CPU 1 cL a
a

a

cL

cL

- Preferred tree
cP t s

cF i
- Last frees

- Preferred tree
cP t s

cF i
- Last frees

Counter: Number of free 4 KiB frames 1 if entry reserved for some CPU

Avoid false sharing: per-CPU partitioning into 64MiB chunks (Trees).
Lower level: No contention on cache managing children array entries (32 fit into one cache line)
Upper Level: Contention on cache managing trees array entries (32 fit into one cache line)

 Split counter to maintain free-frame count mostly locally: (cP + cU ≤ 512 · 32 = 16384)
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LLFree – Architecture
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cL

cL

64 MiB Trees
2 MiB Children 4 KiB Bit Fields

(Persistent on NVRAM)

512 bit (512 frames)
(= 64 B cache line)

Upper Level Lower Level

10 + 1 bit
(2 B aligned)

(32 · 2 B = 64 B)

15 + 1 bit
(2 B aligned)

Flag

Free frames counter

Reservedr
Tree reservationt

Start PFN

Allocateda

s

c

In treeU

In bit fieldL

In preferred treeP

Last frees countercF

Last frees tree indexi

CPU 1 cL a
a

a

cL

cL

- Preferred tree
cP t s

cF i
- Last frees

- Preferred tree
cP t s

cF i
- Last frees

Counter: Number of free 4 KiB frames 1 if entry reserved for some CPU

Avoid false sharing: per-CPU partitioning into 64MiB chunks (Trees).
Lower level: No contention on cache managing children array entries (32 fit into one cache line)
Upper Level: Contention on cache managing trees array entries (32 fit into one cache line)
 Split counter to maintain free-frame count mostly locally: (cP + cU ≤ 512 · 32 = 16384)
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LLFree – Scalability (DRAM)

Linux frame allocation Linux 6.0 on Xeon(R) Gold 5320: 2 × 26 physical cores @ 2.20 GHz, 256/512 GiB DRAM/NVRAM per node

103

105

Av
g.

tim
e
(n
s)

Frames Huge Frames

1 8 16 26
Cores

1 8 16 26
Cores

105

Operation
alloc
free

Allocator
LLFree
Linux
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Visibility 6= Persistency Thread Consistency vs. Crash Consistancy

Core

L1 L1

L2

L3

WPQ

NVM

MOV

ADR
eADR

A change becomes visible to other cores, when it reaches the L1 Cache
We can order multiple changes by memory barriers.
All our multi-core algorithms rely on this!

A change becomes persistent on NVRAM, when ... it depends

↪→ eADR: Change has reached the L1 7→ Visibility = Persistency
Great concept! ... that unfortunately did not made it to market

↪→ ADR: Changed cache line has eventually reached the WPQ
Ensuring durability requires expensive explicit flushes
Truely awfull programming model, especially on multi-core!

↪→ CXL: We don’t know yet, but most probably like ADR

↪→ General: Assume persist granularity of a single cache line [6, 19]

Problem: Fixing Hardware in Software
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↪→ eADR: Change has reached the L1 7→ Visibility = Persistency
Great concept! ... that unfortunately did not made it to market

↪→ ADR: Changed cache line has eventually reached the WPQ
Ensuring durability requires expensive explicit flushes
Truely awfull programming model, especially on multi-core!

↪→ CXL: We don’t know yet, but most probably like ADR
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LLFree – Crash Consistency and Recovery on NVRAM

CPU 0

cU r
r
r
r
r
r
r

r

cU
cU
cU
cU
cU
cU

cU

cL a
a

a

cL

cL

64 MiB Trees
2 MiB Children 4 KiB Bit Fields

(Persistent on NVRAM)

512 bit (512 frames)
(= 64 B cache line)

Upper Level Lower Level

10 + 1 bit
(2 B aligned)

(32 · 2 B = 64 B)

15 + 1 bit
(2 B aligned)

Flag

Free frames counter

Reservedr
Tree reservationt

Start PFN

Allocateda

s

c

In treeU

In bit fieldL

In preferred treeP

Last frees countercF

Last frees tree indexi

CPU 1 cL a
a

a

cL

cL

- Preferred tree
cP t s

cF i
- Last frees

- Preferred tree
cP t s

cF i
- Last frees

Bitfields
Children

Per-CPU
Trees

NVRAM

PageFramesPersistent
Metadata

ZonePage

...
DRAM

Volatile
Metadata

Upper Level
(reconstructed)

Lower Level
(must be always consistent)

Only Lower Level kept in NVRAM
Plus extra zone page for
metadata and crash flag

Upper Level can be restored
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LLFree – Crash Consistency and Recovery on NVRAM

cL a
a

a

cL

cL

2 MiB Children 4 KiB Bit Fields

512 bit (512 frames)
(= 64 B cache line)

10 + 1 bit
(2 B aligned)

(32 · 2 B = 64 B)

Flag

Free frames counter

Reservedr
Tree reservationt

Start PFN

Allocateda

s

c

In treeU

In bit fieldL

In preferred treeP

Last frees countercF

Last frees tree indexi

cL a
a

a

cL

cL

1 7→ entry is a huge frame

Single cache-line rule: Exactly one cache line (selected by the a-flag) is the authoritative truth
1: Entry is allocated as huge frame

 child entry defines the truth
0: Entry is free/allocated as normal frames

 bits in bit field define the truth

↪→ Works with the minimal persist granularity offered by any NVM implementation.

cd,dl (WSOS’23) 6 OS Challenges for Modern Memory Systems | 6.3 ParPerOS – Contention-Avoiding Design 6–33

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04



LLFree – Crash Consistency and Recovery on NVRAM

cL a
a

a

cL

cL

2 MiB Children 4 KiB Bit Fields

512 bit (512 frames)
(= 64 B cache line)

10 + 1 bit
(2 B aligned)

(32 · 2 B = 64 B)

Flag

Free frames counter

Reservedr
Tree reservationt

Start PFN

Allocateda

s

c

In treeU

In bit fieldL

In preferred treeP

Last frees countercF

Last frees tree indexi

cL a
a

a

cL

cL

1 7→ entry is a huge frameAuthoritative truth

 Restore to 0

Single cache-line rule: Exactly one cache line (selected by the a-flag) is the authoritative truth
1: Entry is allocated as huge frame  child entry defines the truth

0: Entry is free/allocated as normal frames

 bits in bit field define the truth

↪→ Works with the minimal persist granularity offered by any NVM implementation.
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LLFree – Crash Consistency and Recovery on NVRAM

cL a
a

a

cL

cL

2 MiB Children 4 KiB Bit Fields

512 bit (512 frames)
(= 64 B cache line)

10 + 1 bit
(2 B aligned)

(32 · 2 B = 64 B)

Flag

Free frames counter

Reservedr
Tree reservationt

Start PFN

Allocateda

s

c

In treeU

In bit fieldL

In preferred treeP

Last frees countercF

Last frees tree indexi

cL a
a

a

cL

cL

0 7→ entry contains normal frames

Single cache-line rule: Exactly one cache line (selected by the a-flag) is the authoritative truth
1: Entry is allocated as huge frame  child entry defines the truth
0: Entry is free/allocated as normal frames

 bits in bit field define the truth

↪→ Works with the minimal persist granularity offered by any NVM implementation.
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LLFree – Crash Consistency and Recovery on NVRAM

cL a
a

a

cL

cL

2 MiB Children 4 KiB Bit Fields

512 bit (512 frames)
(= 64 B cache line)

10 + 1 bit
(2 B aligned)

(32 · 2 B = 64 B)

Flag

Free frames counter

Reservedr
Tree reservationt

Start PFN

Allocateda

s

c

In treeU

In bit fieldL

In preferred treeP

Last frees countercF

Last frees tree indexi

cL a
a

a

cL

cL

0 7→ entry contains normal frames

Authoritative truth

 Restore cL from bit field

Single cache-line rule: Exactly one cache line (selected by the a-flag) is the authoritative truth
1: Entry is allocated as huge frame  child entry defines the truth
0: Entry is free/allocated as normal frames  bits in bit field define the truth

↪→ Works with the minimal persist granularity offered by any NVM implementation.
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LLFree – Crash Consistency and Recovery on NVRAM
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LLFree – Crash Consistency and Recovery on NVRAM

CPU 0

cU r
r
r
r
r
r
r

r

cU
cU
cU
cU
cU
cU

cU

cL a
a

a

cL

cL

64 MiB Trees
2 MiB Children 4 KiB Bit Fields

(Persistent on NVRAM)

512 bit (512 frames)
(= 64 B cache line)

Upper Level Lower Level

10 + 1 bit
(2 B aligned)

(32 · 2 B = 64 B)

15 + 1 bit
(2 B aligned)

Flag

Free frames counter

Reservedr
Tree reservationt

Start PFN

Allocateda

s

c

In treeU

In bit fieldL

In preferred treeP

Last frees countercF

Last frees tree indexi

CPU 1 cL a
a

a

cL

cL

- Preferred tree
cP t s

cF i
- Last frees

- Preferred tree
cP t s

cF i
- Last frees

Restore cU from childrenReserve per-CPU tree as usual Tree reservation is not restored

Upper Level information is simply recreated at boot time.

↪→ Crash-consistent page frame allocation and deallocation for normal and huge frames!
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6 OS Challenges for Modern Memory Systems

6.4 Summary and Conclusion
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Summary: OS Challenges for Modern Memory Systems

In the end, everything has become a memory problem!
Thread-level paralellism  memory placement.
I/O throughput  memory allocation.
Contention  memory interaction.

Hardware advances (over 30 years) are uneven – and will continue to be!
RAM: 25 000x larger L1: 250x larger TLB: 25x larger
RAM: 500–1 000x higher througput 2x lower latency
I/O: 5 000–90 000x higher throughput.
NVRAM: It’s a thing, but SSDs still 5-10x cheaper.

OS memory managment is still dominated by the „Mach view“.
RAM is scarce. Share it.
Memory is an implict resource. Demand paging for everything.
I/O is slow. Other overheads neglectible.

↪→ Lots of things to do!
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Conclusion: Problems and Principles for Memory Management

Problems
The Cost of Sharing

External Fragmentation is back

The Hierarchy is a Network

Designed for Scarcity, not Latency

Software must fix Broken Hardware

Designed for Slow and Sequential I/O

Principles
Explicit and Non-Shared Semantics

Hardware-Specific Granularities

Constructive Contention Avoidance

Memory Scarcity is the Exception

Mitigate Hardware Problems (for Now)

Parallel and Asynchronous I/O

cd,dl (WSOS’23) 6 OS Challenges for Modern Memory Systems | 6.4 Summary and Conclusion 6–36

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04



6 OS Challenges for Modern Memory Systems

6.5 Referenzen

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04



Referenzen

[1] Mike Accetta, Robert Baron, David Golub u. a. „MACH: A New Kernel Foundation for UNIX Development“. In: Proceedings of
the USENIX Summer Conference. USENIX Association, Juni 1986, S. 93–113.

[2] Nadav Amit, Amy Tai und Michael Wei. „Don’t shoot down TLB shootdowns!“ In: Proceedings of the Fifteenth European
Conference on Computer Systems. 2020, S. 1–14.

[3] Andrew Baumann, Simon Peter, Adrian Schüpbach u. a. „Your computer is already a distributed system. Why isn’t your OS?“
In: HotOS. 2009.

[4] Silas Boyd-Wickizer, Haibo Chen, Rong Chen u. a. „Corey: An Operating System for Many Cores“. In: 8th Symposium on
Operating System Design and Implementation (OSDI ’08) (San Diego, CA, USA). Berkeley, CA, USA: USENIX Association, 2008,
S. 43–57.

[5] Zhangyu Chen, Yu Hua, Bo Ding u. a. „Lock-free Concurrent Level Hashing for Persistent Memory“. In: 2020 USENIX Annual
Technical Conference (USENIX ATC 20). USENIX Association, Juli 2020, S. 799–812. ISBN: 978-1-939133-14-4. URL:
https://www.usenix.org/conference/atc20/presentation/chen.

[6] Jeremy Condit, Edmund B. Nightingale, Christopher Frost u. a. „Better I/O Through Byte-addressable, Persistent Memory“. In:
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles (SOSP ’09). Big Sky, Montana, USA: ACM,
2009, S. 133–146. ISBN: 978-1-60558-752-3. DOI: 10.1145/1629575.1629589.

[7] Dave Dice und Alex Kogan. „Compact NUMA-aware locks“. In: Proceedings of the Fourteenth EuroSys Conference 2019.
2019, S. 1–15.

cd,dl (WSOS’23) 6 OS Challenges for Modern Memory Systems | 6.5 Referenzen 6–38

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04

https://www.usenix.org/conference/atc20/presentation/chen
https://doi.org/10.1145/1629575.1629589


Referenzen (Forts.)

[8] Dawson R. Engler, M. Frans Kaashoek und James O’Toole. „Exokernel: An Operating System Architecture for
Application-Level Resource Management“. In: Proceedings of the 15th ACM Symposium on Operating Systems Principles
(SOSP ’95) (Copper Mountain, CO, USA). New York, NY, USA: ACM Press, Dez. 1995, S. 251–266. ISBN: 0-89791-715-4. DOI:
10.1145/224057.224076.

[9] John Fotheringham. „Dynamic Storage Allocation in the Atlas Computer, Including an Automatic Use of a Backing Store“. In:
Communications of the ACM 4.10 (Okt. 1961), S. 435–436.

[10] Michal Friedman, Maurice Herlihy, Virendra Marathe u. a. „A persistent lock-free queue for non-volatile memory“. In: ACM
SIGPLAN Notices 53.1 (2018), S. 28–40.

[11] Robert A. Gingell, J. Moran und William Shannon. „Virtual Memory Architecture in SunOS“. In: Proceedings of Summer ’87
USENIX Conference. Juni 1987.

[12] Hermann Härtig, Michael Hohmuth, Jochen Liedtke u. a. „The Performance of µ-Kernel-Based Systems“. In: Proceedings of
the 16th ACM Symposium on Operating Systems Principles (SOSP ’97). New York, NY, USA: ACM Press, Okt. 1997. DOI:
10.1145/269005.266660.

[13] Joseph Izraelevitz, Hammurabi Mendes und Michael L Scott. „Linearizability of persistent memory objects under a
full-system-crash failure model“. In: International Symposium on Distributed Computing. Springer. 2016, S. 313–327.

[14] Kunal Korgaonkar, Joseph Izraelevitz, Jishen Zhao u. a. „Vorpal: Vector clock ordering for large persistent memory systems“.
In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. 2019, S. 435–444.

cd,dl (WSOS’23) 6 OS Challenges for Modern Memory Systems | 6.5 Referenzen 6–39

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04

https://doi.org/10.1145/224057.224076
https://doi.org/10.1145/269005.266660


Referenzen (Forts.)

[15] Youngjin Kwon, Hangchen Yu, Simon Peter u. a. „Coordinated and Efficient Huge Page Management with Ingens“. In: 12th
Symposium on Operating Systems Design and Implementation (OSDI ’16). Savannah, GA, USA: USENIX Association, 2016,
S. 705–721. ISBN: 9781931971331.

[16] Viktor Leis, Adnan Alhomssi, Tobias Ziegler u. a. „Virtual-Memory Assisted Buffer Management“. In: Proceedings of the ACM
SIGMOD/PODS International Conference on Management of Data (SIGMOD’23). Accepted at SIGMOD’23, to appear. Seattle,
WA, USA: ACM, Juni 2023.

[17] Juan Navarro, Sitaram Iyer und Alan Cox. „Practical, Transparent Operating System Support for Superpages“. In: 5th
Symposium on Operating Systems Design and Implementation (OSDI ’02). Boston, MA: USENIX Association, Dez. 2002.

[18] Elliot I. Organick. The Multics System: An Examination of its Structure. MIT Press, 1972. ISBN: 0-262-15012-3.

[19] Steven Pelley, Peter M. Chen und Thomas F. Wenisch. „Memory Persistency“. In: Proceeding of the 41st Annual International
Symposium on Computer Architecture (ISCA ’14). Minneapolis, Minnesota, USA: IEEE Press, 2014, S. 265–276. ISBN:
9781479943944.

[20] Markus Velten, Robert Schöne, Thomas Ilsche u. a. „Memory Performance of AMD EPYC Rome and Intel Cascade Lake SP
Server Processors“. In: Proceedings of the 2022 ACM/SPEC on International Conference on Performance Engineering. 2022,
S. 165–175.

[21] Tianzheng Wang, Justin Levandoski und Per-Ake Larson. „Easy Lock-Free Indexing in Non-Volatile Memory“. In: 2018 IEEE
34th International Conference on Data Engineering (ICDE). 2018, S. 461–472. DOI: 10.1109/ICDE.2018.00049.

cd,dl (WSOS’23) 6 OS Challenges for Modern Memory Systems | 6.5 Referenzen 6–40

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04

https://doi.org/10.1109/ICDE.2018.00049


Referenzen (Forts.)

[22] David Wentzlaff und Anant Agarwal. „Factored operating systems (fos): the case for a scalable operating system for
multicores“. In: ACM SIGOPS Operating Systems Review 43 (2 Apr. 2009), S. 76–85. ISSN: 0163-5980. DOI:
10.1145/1531793.1531805.

[23] Jian Yang, Juno Kim, Morteza Hoseinzadeh u. a. „An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory“. In: 18th USENIX Conference on File and Storage Technologies (FAST 20). Santa Clara, CA: USENIX Association, Feb.
2020, S. 169–182. ISBN: 978-1-939133-12-0. URL: https://www.usenix.org/conference/fast20/presentation/yang.

cd,dl (WSOS’23) 6 OS Challenges for Modern Memory Systems | 6.5 Referenzen 6–41

06
-M

em
or
yC

ha
lle

ng
es

20
23

-0
4-

04

https://doi.org/10.1145/1531793.1531805
https://www.usenix.org/conference/fast20/presentation/yang

	6 OS Challenges for Modern Memory Systems
	6.1 Virtualizing Memory – A Short Recap
	6.2 Hardware Developments
	6.3 ParPerOS – Contention-Avoiding Design
	6.4 Summary and Conclusion
	6.5 Referenzen


