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Performance Models ...
● Often implicit part of algorithms

– Compute/data placement in systems
– Goal: min latency, max throughput, ...

● E.g. data replacement policy in conventional memory hierarchy:
– Goal: minimize data access latency on CPU
– Performance model  Proxy: minimize #misses in CPU caches→
– Lower bound: OPT (Bélády / evict farthest-in-the-future)
– Common strategy: Least Recently Used
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… for Disruptive Memory Technologies
● New technologies challenge assumptions

– High-Bandwidth Memory (HBM)
– Non-Volatile RAM (NVRAM)

● Similar size/latency of layers
– Cache bypass becomes feasible
– Minimizing #misses no longer suitable [9]
– OPT data replacement algorithm is no longer optimal [10]
– LRU/FCFS may be insufficient  new policies needed→

new performance models needed→
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System-Level Models
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Outline
● Benchmarks and models for individual components

CPU + DRAM + disruptive memory technology

● System- and application-level performance models
interaction and contention between components and applications

● Challenges and conclusion

Caveat Emptor:
This is not a comprehensive survey
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Individual Components
CPU and DRAM coupled with ...

● Non-Volatile Memory (NVRAM)

● High-Bandwidth Memory (HBM)

● Remote Direct Memory Access (RDMA)

● Near-Memory Computing (NMC)
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Non-Volatile Memory (NVRAM)
● E.g. Intel Optane DC Persistent Memory (DCPMM)

– DDR4 modules with persistent memory
– Byte-adressable, larger and cheaper than DRAM
– Discontinued, successor likely via PCIe

● Applications:
– Main memory with DRAM cache
– DRAM extension
– Storage for databases and file systems

● Latency ≈ DRAM
● Bandwidth ≈ NVMe Disks
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Non-Volatile Memory (NVRAM)
● Breaks assumptions about memory hierarchy

– Limited write endurance
– Asymmetric: read latency ≠ write latency

 ⇒ Suitable data placement strategies?
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DIMM Capacity R/W Latency R/W Bandwidth Endurance

DRAM 8 .. 64 GB 70 ns 75 GB/s ∞

NVRAM 128 .. 512 GB ~200 / ~600 ns 8 / 3 GB/s ~1M writes
Source: [10]
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NVRAM: More than just slower RAM [11]
● Simulators (e.g. PMEP, Ramulator) do not reflect reality
● Latency and bandwidth are not constant
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● Microbenchmarks  queues and buffers between CPU and NVRAM→
● R/W Pending Queue
● Load-Store Queue

(reordering  write combining)→
● Read-Modify-Write Buf.

(Media uses 256B blocks)

● Addr. Indirection Trans.
(wear-leveling)

NVRAM: Caches and Queues [11]
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● NVRAM is a shared resource
● Contention between applications

 Side-channel attacks→

NVRAM Models: Security [12]

Should performance models
incorporate security information?
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High-Bandwidth Memory (HBM)
● 3D-stacked DRAM close to CPUs

– E.g. Fujitsu A64FX, FPGAs, Intel Knights Landing (KNL)
– Apple M1/M2: on-chip DDR5

● Applications:
– HBM as DRAM cache
– HBM as separate memory

● Latency ≈ DRAM
● Bandwidth > DRAM
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HBM as Last-Level Cache [9]
● No hardware cache control
● Two sources of contention

– Data placement in HBM
 Replacement algorithm→

– Data transfers to/from DRAM
 Scheduling algorithm→

● Channel model
● KNL: LRU placement still useful; FCFS DRAM access provably bad
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HBM Benchmarks [13]
● KNL benchmarks: max. sustained bandwidth
● Same architecture, different results
● ≠ Channel model (single-threaded view,

no contention / parallelism)

Should performance models take a
single- or a multi-threaded view?

What about contention?
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● High-Bandwidth Interconnect (≥100 Gbit/s)
– e.g. InfiniBand
– Connected via PCIe, DMA capable
– Supports DRAM and NVRAM, at least

● High-capacity, high-latency
● Interconnect ≈ CPU/Socket fabric
● E.g. HPE: 160 TB of fabric-attached

shared memory
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RDMA Network Interface [14]
● RDMA NIC handles transfers itself

– Bypasses host CPU / OS kernel
– Writes  L3 Cache (DDIO) or RAM→

● One R/W queue pair per application
– Work Queue Entries (WQEs)

 data transfers≙
● One completion queue for entire NIC
● Built-in scheduler manages queues and transfers
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● RDMA NIC associates transfers
(queues) with network connections
– Built-in metadata cache
– Too many connections (RC, UC)

 cache thrashing→
● ≠ Conventional network approach:

Resource Utilization Maximization
● Proposal: Connection-aware

workload placement

RDMA: Connection Cache [15]
Performance model:

NIC with max #connections
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RDMA: Scheduler [15]
● RDMA transfers run to

completion (no preemption)
● Large transfers can cause delays
● Proposed solution: Virtual RDMA

– Priority-aware, cooperative abstraction layer and scheduler: “Avatar”
– Aggregate connections  one transfer per target (reduce cache thrashing)→
– Split up large transfers  fine-grained scheduling (reduce contention effects)→How to incorporate performance models of RDMA targets?
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Near-Memory Computing (NMC)
● Memory-bound workloads limited by RAM

latency / bandwidth  add CPUs to memory→
● Past: experiments with FPGAs and logic circuits
● Recently: UPMEM PIM (“Processing in Memory”)

– DDR4 memory with on-chip 32-bit CPUs
– Limited hardware support

(needs BIOS patches)
– Limited power supply  low clock rate→
– OS API: Regular DRAM ≠ PIM DRAM
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UPMEM PIM
● 8 GB DDR4
● Custom API
● 128× CPU @ ~350 MHz

– a.ka. DPU / „Data Processing Unit“
– Up to 24 Threads (Tasklets) each
– Manual cache control: IRAM  / WRAM ② ③
– 11 sequential pipeline levels ⑦
– Threads can communicate / synchronize

● No shared memory / IPC between DPUs

Source: UPMEM

How to find
suitable workloads?
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PrIM Microbenchmarks [16]
● Comprehensive performance evaluation

– Arithmetic throughput, op. intensity
– WRAM („Cache“) and DRAM transfers
– Stride and operand sizes

● Models: Linear regression + prose
– Hints for developers, e.g.
– ≥11 Tasklets for arithmetic saturation
– Best for integer addition/subtraction
– Suitable for memory-bound tasks

Roofline
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NMC: Predicting offloading suitability [17]
● Given an application: will it benefit from NMC?

?
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Outline
● Benchmarks and models for individual components

CPU + DRAM + disruptive memory technology

● System- and application-level performance models
interaction and contention between components and applications

● Challenges and conclusion
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Motivation: Systems with Combined DMTs
● The future will bring the new technologies all at once

… and system software must handle them efficiently!
● Example: RDMA + NVM interactions [5]

RDMA WRITE
to NVM

Can we reach a full 100Gbps?

RAM
NVM RAM
NVM

No

massive improvements by taking 
the architecture into account

H1. Avoid cross-socket NVM 
accesses

H3. Disable DDIO
H5. Use XPLine granularity 

for writes
H6. Use PCIe DW granularity 

(64B) for small writes
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Wanted: A Full-System and Application Model
● Features of full-system model

– Description of hardware components
● Detailed sub-models, especially for DMTs
● Memory: capacity, alignment requirements, ...
● Compute units: processing power,

cache sizes / strategy, ...

– Topology of interconnects
● Bandwidth limits, latencies, arbitration mechanisms, …

● Features of application model
– Structure, thread interaction, resource demands, ...

● Purpose
– Offline planning/optimization  compiler, simulator, design space exploration→
– Online placement/scheduling  operating system, database management, language runtime→

same level of 
abstraction
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Offline Models: Literature Review [6]
● Feature rich,

but no DMT support

● Used for detailed simulation

● Low accuracy 

● Extreme simulation runtimes

application „model“: x86 machine code
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Offline Models: Literature Review [6]
● Feature rich,

but no DMT support

● Used for detailed simulation

● Low accuracy

● Extreme simulation runtimes

application „model“: x86 machine code

▶ Hardly affordable during the 
development cycle

▶ Change granularity? Use 
measurements?
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Online Models: Literature Review
● Typical use case: NUMA-aware application behavior

– No. of threads, thread affinity, etc.

● Examples
– hwloc [1] – the model behind lstopo

– mctop [3] – measurement-based topology analysis

– SKB [4] – Barrelfish’s versatile „System Knowledge Base“

– Pythia [8] – Smart co-location with machine learning
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hwloc [1] — The Model Behind lstopo
● Early model from 2010
● Describes NUMA topologies

– Based on data from Linux sysfs

● Entities
– „Node, Socket, Cache, Core,

and more“

● Attributes
– „such as the cache type and size,

or the socket number“

▶ no meta model,
no accelerators,
no performance metrics,
no DMTs

▶ Nevertheless, useful!
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hwloc — Useful Despite Its Deficiencies
● Simple performance model [2]

● Locality pays off

● Application model
process

amount of data

bandwidth (kind of)
same die: 1000
1 hop: 100
2 hops: 10

static mapping calculated with SCOTCH library
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hwloc — Static Process Mapping
● SCOTCH library [7]: dual recursive bi-partitioning heuristic
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1.Find a cut in D so that both partitions are well-balanced and have 
minimal cross-partition communication costs.

2.Find a cut in P so that both partitions are well-balanced and have 
minimal cross-partition data exchange.
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hwloc — Static Process Mapping
● SCOTCH library [7]: dual recursive bi-partitioning heuristic
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hwloc — Static Process Mapping
● SCOTCH library [7]: dual recursive bi-partitioning heuristic
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MCTOP [3] — A Multicore Performance Model
● Measurement-based

topology inference
– Fancy MCTOP-ALG algorithm:

Latency matrix  clustering  components  roles→ → →
– But:

● Portable and extensible by plugins

accessible memory

“execution contexts”

NUMA 
node

▶ Cool stuff, but danger 
of inaccurate results
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Barrelfish SKB [4] — A Versatile Framework
● Constraint Logic Programming (Prolog-based)
● datagatherer provides „facts“

– CPUID  cores, cache sizes, …→
– ACPI tables  memory regions, …→
– PCIe/USB enumeration  device list→
– measurements  performance metrics→
– any device driver can add facts

●  client library supports queries and algorithms
– examples: PCI configuration, NUMA-aware multicast,

global resource mgnt.

“system knowledge base”

▶ Nice, but the 
infrastructure is 
not for free!
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Pythia [8] — Smart Co-Location with ML
● Regression model predicts contention on shared resources

– For latency-sensitive workload combined with K batch workloads W0,…,WK-1

– High accuracy even with sparsely sampled combination space

● Usage
scenario:

BS=∑
i=0

K−1

cW i
BW i

combined 
interference

individual interference

trained coefficients: interference vulnerability

▶ Very compact system 
and application model!
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Outline
● Benchmarks and models for individual components

CPU + DRAM + disruptive memory technology

● System- and application-level performance models
interaction and contention between components and applications

● Challenges and conclusion
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Defining “Performance Model”
Prose Visual Formal

HBM (Laghari et al.)

NVM (Wang et al.)

mctop (Chatzopoulos et al.)

E.g. weighted graph (V, E, W)
v  V : NUMA nodes∈
(u, v)  E  Interconnect u – v∈ ⇔
w(u, v) = (latency, bandwidth)

● Manual generation:
Benchmark analysis,
data sheets

● Manual application
● Can include simulators

● Partially automated
● Can be built into 

placement algorithms
● manual post-processing

Automated model usage
requires formal meta models
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Model Design
● Knowledge base

– Querying topology / performance attributes
– E.g. HBM channels, LENS, SKB, hwloc, mctop, …

● Machine learning
– Pythia: Batch workload scheduling
– NMPO: Offloading suitability

Can (and should) we combine
Knowledge bases and ML?
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Model Use Cases

Simulation
Graph,

Network
Regression,

heuristic
Hardware
heuristic

Speed
HH:MM ms µs ns

● Offline
● Verification
● Evaluation

● Simulation must 
be correct

● Workload 
placement

● Task placement ● Short-term data 
placement, e.g. 
caching

Workload/Task model?
Profiling required?

How to design scalable models?
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Conclusion
● Disruptive Memory Technologies challenge design assumptions
● System engineers should adjust models and placement algorithms
● Modeling methods, assumptions, and findings vary

– Lack of meta models in the literature
– Inconsistent contention handling
– Data source: data sheets vs. micro-benchmarks
– Profiling / Describing application requirements

 ⇒ Lots of room for improvement
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