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Performance Models ... :
ps
. . . . Capacity
* Often implicit part of algorithms e
‘ GB | Lat
- Compute/data placement in systems / oRAN T
- Goal: min latency, max throughput, ... , pisks ey

* E.g. data replacement policy in conventional memory hierarchy:

- Goal: minimize data access latency on CPU
- Performance model = Proxy: minimize #misses in CPU caches
- Lower bound: OPT (Bélady / evict farthest-in-the-future)

- Common strategy: Least Recently Used
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... for Disruptive Memory Technologles

* New technologies challenge assumptions

Regs

- High-Bandwidth Memory (HBM)
- Non-Volatile RAM (NVRAM)

4 N

HBM

. i _ | Capacity
Similar size/latency of layers DRAM A4 Latency
- Cache bypass becomes feasible | Disks

- Minimizing #misses no longer suitable [9]
- OPT data replacement algorithm is no longer optimal [10]

- LRU/FCFS may be insufficient - new policies needed
-new performance models needed
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System-Level Models

Non-Uniform Memory Access ~ Rregsss __—— Multi-core and many-core CPUs
o)
\
HBM /' Near-Memory Computing
DRAM " (NMC) can improve parallelism
Novel memory NYRAME
technologies have Disks

regs s s

/4. HBM HBM /%

Remote Storage Remote Storage / oram | DRAM
/. NVRAM NVRAM /.
disks | disks

Applications contend = Remote Direct Memory Access o T s | mon S
for shared resources (RDMA) turns this into Giza

47 g

different properties
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Outline

* Benchmarks and models for individual components
CPU + DRAM + disruptive memory technology

* System- and application-level performance models
interaction and contention between components and applications

* Challenges and conclusion

Caveat Emptor:
This is not a comprehensive survey
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Individual Components
CPU and DRAM coupled with ...

* Non-Volatile Memory (NVRAM)
* High-Bandwidth Memory (HBM)
* Remote Direct Memory Access (RDMA)

* Near-Memory Computing (NMC)
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Non-Volatile Memory (NVRAM)

E.g. Intel Optane DC Persistent Memory (DCPMM) Reg.
- DDR4 modules with persistent memory mHBM 2
2 DRAM
- Byte-adressable, larger and cheaper than DRAM / NVRAM @
- Discontinued, successor likely via PCle .
Applications:

- Main memory with DRAM cache
- DRAM extension

- Storage for databases and file systems

Latency = DRAM
Bandwidth = NVMe Disks

Source: Intel

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 7



ﬁ :
ARG soncpzimre
Non-Volatile Memory (NVRAM)
* Breaks assumptions about memory hierarchy Reg
— Limited write endurance  HBM
2 DRAM
- Asymmetric: read latency # write latency (V/ AL @
Disks ;

= Suitable data placement strategies?

DIMM Capacity R/W Latency R/W Bandwidth Endurance
DRAM 8..64 GB 70 ns 75 GB/s o
NVRAM 128 .512GB ~200/ ~600 ns 8/ 3 GB/s ~1M writes
Source: [10]
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NVRAM: More than just slower RAM [11]

* Simulators (e.g. PMEP, Ramulator) do not reflect reality

* Latency and bandwidth are not constant

— Optane — Ramulator-PCM _ — Optane(1DIMM) — PMEP(1DIMM)
%300 2 400 ——
- / =300} < =
0200 | w_ 2 © / ©
3 2200 ~——_ = T
> >
5100 3100
) o)
CU e
5 o g ol - - -
256 1K 8K 64 K 64 1K 64K 4M 128M

Access region size (byte) Access region size (byte)
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NVRAM: Caches and Queues [11]

Microbenchmarks = queues and buffers between CPU and NVRAM
R/W Pending Queue

LENS
Performance Prober Buffer Prober Policy Prober
- [Hierarchy [ Interleaving |
Load Sto re Queue Latency | Si’ze [[6ranularity]| [Data Migrationl
(reordering = write combining) |+ [ T —~( T BAKE
2568 AKB: :60us| _ [
170ns 100ns  Mmigration/
Read-Modify-Write Buf. cPU RMA Buf Lol [ATT Buf Media
Cache 16KB 16MB
(Media uses 256B blocks) 58 ean. ZQB
25- 200ns- 75ns Read BW 6GB/s

CPU ! Optane DIMM Write BW 2GB/s

Addr Ind|reCt|On Trans Fig. 4. LENS probers and Optane DIMM parameters. Red numbers are

(wear-levelin g) obtained from Intel documents; blue numbers are characterized by LENS.
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NVRAM Models: Security [12]

* NVRAM is a shared resource

Sender Receiver
Kernel Kernel N
; S
* Contention between applications =
. [ Pxwm ] | kv & ] é ég;ié;ia% e
— Side-channel attacks Comom s ) [omomiz e o
( 0 Host Kernel ! | K ° e SBRT ™ °
( .;, L1 cache .;,I (b) Channel performance.
[ L2 Cache ] Z1000
| Media | [ Media | gzzg
gsso

-4—P Guest memory access

ShOUld performance mOdE|S 4-->Host( )meomory access OC: 32148 I?:r 80 96 1112 128
. . . . a) Overview. (c) Channel receiver signal.
INnCOorporate security information?

Figure 9: Cross-VM covert channel. (c) is a receiver signal
from (b) that achieves 11 kbps bandwidth with 3.5% error
rate. This channel uses 14 blocks, 1 MiB stride size and 16
repeat rounds. Y-axis shows the average per-block latency.
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High-Bandwidth Memory (HBM)

3D-stacked DRAM close to CPUs

- E.g. Fujitsu A64FX, FPGAs, Intel Knights Landing (KNL)
— Apple M1/M2: on-chip DDR5

Applications:
- HBM as DRAM cache

— HBM as separate memory

Latency = DRAM
Bandwidth > DRAM

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 13
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HBM as Last-Level Cache [9]

* No

hardware cache control

* Two sources of contention

04/04/2023

Data placement in HBM
— Replacement algorithm

Data transfers to/from DRAM
— Scheduling algorithm

Channel model

HBM

Eingebettete
Softwaresysteme

4

A

o

\/

2 0. . .

p cores

Main
Memory

Figure 1: The HBM model with p cores and two levels of

memory.

KNL: LRU placement still useful; FCFS DRAM access provably bad

System-Level Performance Models for Disruptive Memory Technologies
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HBM Benchmarks [13] -

400

* KNL benchmarks: max. sustained bandwidth £
'; 200

* Same architecture, different results

* # Channel model (single-threaded view, 8

294

64 128
Number of Threads

Fig. 1: Stream Triad Benchmark results for MCDRAM and

no contention / parallelism) DDR with KMP_AFFINITY = Scatter.

:+ Copy to MCDRAM from DDR N Copy to DDR from MCDRAM

161 165 164

Should performance models take a
single- or a multi-threaded view?
What about contention? s

Bandwidth (GB/s)
)
o

i, <

64 128 256

Number of Threads

Fig. 2: Copy operation to and from the two memory types.
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Remote Direct Memory Access (RDMA) A

High-Bandwidth Interconnect (=100 Gbit/s)
- e.g. InfiniBand

- Connected via PCle, DMA capable _

- Supports DRAM and NVRAM, at least

Jwww.nextplatform.comg2017/01/09/hpe-poviers-md
JIFHEREE P
{c : 1B

High-capacity, high-latency | E
Wiy 1 e

Interconnect = CPU/Socket fabric

E.g. HPE: 160 TB of fabric-attached
shared memory | mnnn

Source: Kimberley Keeton,
NVMW'19 Keynote

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 16



'h. UNIVERSITAT Eingebettete
@OSNABRUCK Softwargeysteme

RDMA Network Interface [14]

RDMA NIC handles transfers itself

- Bypasses host CPU / OS kernel
- Writes — L3 Cache (DDIO) or RAM

Applications G;’ WOE

O |‘ WOE

) Queue Pair

One R/W queue pair per application R '_‘

(O
Resource
scheduler

COE

- Work Queue Entries (WQES5s) OS Kernel
£ data transfers Memory RNIC

§) Completion Queue

One completion queue for entire NIC

Built-in scheduler manages queues and transfers

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 17
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RDMA: Connection Cache [15]

* RDMA NIC associates transfers Performance model;
NIC with max #connections

(queues) with network connections

- Built-in metadata cache

- Too many connections (RC, UC)
— cache thrashing

* # Conventional network approach:

Throughput (Mops)

Resource Utilization Maximization

* Proposal: Connection-aware 1 6 11 16 21 26 31 36 41
Number of connections

(c) Average throughput of RC and UC con-

nections drop drastically when the number of

concurrent connections grows larger than 20.

workload placement

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 18
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RDMA: Scheduler [15]
i Assignﬁi'e':'ﬁf‘;m%ﬁiplexing
« RDMA transfers run to ,, T ——
i Worker § Worker Worker
Completion (no preemption) { Schidule ][ Schidule ][ Schidule
| WQE | | WQE ‘ | WQE | | WQE | | WQE | | WQE |
* Large transfers can cause delays ||[wee]]|[wee ]| [weeT]]|[Fwae ]]| [eT] | [wae |
QP(Send Queue)

.

* Proposed solution: Virtual RDMA

How to incorporate performance models of RDMA targets?

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 19
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Near-Memory Computing (NMC)

.
* Memory-bound workloads limited by RAM {Reg&

latency / bandwidth —» add CPUs to memory y = W
* Past: experiments with FPGAs and logic circuits s

* Recently: UPMEM PIM (“Processing in Memory")
- DDR4 memory with on-chip 32-bit CPUs

- Limited hardware support
(needs BIOS patches)

- Limited power supply = low clock rate & EES [ &

B H LR H AL

- OS API: Regular DRAM # PIM DRAM B L Source: UPMEN

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 20
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PIM Chip
. Ve ~
I ' I ' M. M
U M E M I M Yy afh 77emory /// Control/Status Interface 4——>{ DDR4 Interface J
~ 3 / ~
EEEEEEEE) | L N
Q! / ¥ — \\\\
1= ek =
Uy > 20k8
¢ 8 G B D D R4 // FETCH3 IRAM o
READOP1 e £ 64-MB
READOP2 » g] 64 bits
\ 5 ais  DRAM
m BEEEEEEE) . e
* CU StO AP I Az )l | 64-KB = (MRAM)
EEEEEEE6 > wRam )
ALU4 )/
/g(‘N\ / MERGEL _55;
PIM-enabled Memory S @ — 0—4 ) P xg)
* 128x CPU @ ~350 MHz
Source: UPMEM

- a.ka. DPU/ ,Data Processing Unit"
- Up to 24 Threads (Tasklets) each

- Manual cache control: IRAM @ / WRAM ® How to find
suitable workloads?

- 11 sequential pipeline levels @

- Threads can communicate / synchronize

* No shared memory / IPC between DPUs
04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 21
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PriM Microbenchmarks [16]

Roofline
* Comprehensive performance evaluation | |
- Arithmetic throughput, op. intensity Boo " o] Goo 1T T
§5°' gl -A-ADD %
- WRAM (,Cache”) and DRAM transfers 1 A |
Ezo- 'i;‘ 1 ~-DIV %
- Stride and operand sizes Sold
< o | < B 050 80054900005 4]
* Models: Linear regression + prose : s s
z (c)FLOAT(lDfU) 7 (d) DOUBLE (1JDPU) | -A-ADD
- Hints for developers, e.g. 3 3
- 211 Tasklets for arithmetic saturation

- Best for integer addition/subtraction

#Tasklets #Tasklets

- S u ita b | e fo F memo ry- b oun d ta S ks FIGURE 4. Throughput of arithmetic operations (ADD, SUB, MUL, DIV) on

one DPU for four different data types: (a) INT32, (b) INT64, (c) FLOAT,
(d) DOUBLE.
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NMC: Predicting offloading suitability [17]

* Given an application: will it benefit from NMC?

Near-Memory Profiling Near-Memory Offloading

- Prediction @
Host profiling (1] Model Training 9 I N s
FLOP/s Hyper-parameter tuning PAN
& i i
- k-fold validation Unseen 'II'_ralne!:i M:n(:hc;nf
— > Application earning Mode|

_ <

\ S/ Training Ensemble

N . . Dataset i
Application NMC simulation @ s

) EE—— : algorithm
S

./

Fig. 2: Near-Memory Computing Profiling and Offloading (NMPO) overview.
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Outline

* Benchmarks and models for individual components
CPU + DRAM + disruptive memory technology

* |System- and application-level performance models
interaction and contention between components and applications

* Challenges and conclusion
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Motivation: Systems with Combined DMTs
* The future will bring the new technologies all at once
.. and system software must handle them efficiently!

* Example: RDMA + NVM interactions [5]
RDMA WRITE caohorine m

100Gbps ck5 Optane 64B .
to NVM vedory | M —— ~  H1. Avoid cross-socket NVM
PCIe s
Can we reach a full 100Gbps? No 2 i H3 aD(.:cels)Tesl,)Dl -
— DRAM I:I‘ +NVM =3 +H1 I:I12+g|3 = +H5 ‘- +H6 Xeon Gold i ZPLine o Isa e . I .
? L]
gl 4 2568 ¥ H5. Use XI?Lme granularity
£ ool %l@.% oDoxPoint for writes
B i .
2l 13 cache 10 & [Seap \gmmzm/  H6- Use PCle DW granularity
16B One-sided WRITE 0 20488 One-sided WRITE i (64B) for small writes
@@ — RN Processor
é ware components of a node with NVM in an RDMA-

massive improvements by taking

the architecture into account
04/04/20=2 . ~ance Models for Disruptive Memory Technologies 25
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WaANTED: A Full-System and Application Model

* Features of full-system model

- Description of hardware components

same level of * Detailed sub-models, especially for DMTs
abstraction . . .
* Memory: capacity, alignment requirements, ...
* Compute units: processing power,
cache sizes / strategy, ... '

- Topology of interconnects T
* Bandwidth limits, latencies, arbitration mechanismes, ... ?

* Features of application model &

- Structure, thread interaction, resource demands, ...

* Purpose
- Offline planning/optimization - compiler, simulator, design space exploration
- Online placement/scheduling - operating system, database management, language runtime

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 26
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Offline Models: Literature Review [6]

* Featurerich,

Table 2: Feature Comparison

Eingebettete
Softwaresysteme

4

but no DMT support
* Used for detailed simulation
* Low accuracy

 Extreme simulation runtimes

Feature Gem5 | Sniper | PTLsim | Multi2Sim | ZSim
> Platform support P++ P P P+ P
Target support T++ T T T+ T
Full system v X v X X
Fast forwarding & cache warmup v v X v v
Checkpointing v X X v X
Trace generation v v v v v
Details of generated performance stats. | D++ D D+ D+ D+
Pipeline depth configuration v X v X v
Energy and power modeling E++ E E E- E
In-order pipeline support v v X X v
HMP support MGS | S X M.,G S
GPU-Modelling v X X v X
Multi-threaded app. support v v v v v
Community support C++ C++ C- C C+

application ,model”: x86 machine code

Note: [feature’s 1st letter]++ is better than [Feature’s Ist letter]+ which is better than [feature’s 1st letter]

which is better than [Feature’s Ist letter]- , S=Single-ISA, M=Multi-ISA, G=GPU

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies
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Offline Models: Literature Review [6]

 Feature rich,

but no DMT support

 Used for detailed simulation

* Low accuracy

 Extreme simulation runtimes

Eingebettete
Softwaresysteme

Table 3: Target Configurations.

Parameter Core i7 Like

Pipeline Out of Order

Pipeline stages 19

Fetch width 6 instructions per cycle
Decode width 4-7 fused p-ops per cycle

Decode queue

56 u-ops

Rename width and Issue width

4 fused p-ops per cycle

Dispatch width

8 u-ops per cycle

Commit width

4 fused p-ops per cycle

application ,model”: x86 machine code

Reservation station 60 entries
Reorder buffer 192 entries
Number of stages 19

L1 data cache 32KB, 8 way
L1 instruction cache 32KB, 8 way
L2 cache size & Associativity | 256KB, 8 way
L3 cache size & Associativity | 8 MB, 16 way
Cache line size 64 Bytes

L1 cache latency 4 cycles

L2 cache latency 12 cycles

L3 cache latency 36 cycles
Instruction latencies Based on [36,(38]
Branch target buffer 4096, 4 way
Return Address Stack 16 entries
Branch misprediction penalty | 14 cycles
Physical Int/FP registers 168 each
Instruction TLB 128 entries

04/04/2023

Data TLB

64 entries, 4 way

L2 TLB

1024 entries, 8 way

System-Level Performance Models for Disruptive Memory Technologies
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Offline Models: Literature Review [6]

* Feature rich,
but no DMT support ;ﬁ i il m:ﬁ e

 Used for detailed simulation
* Low accuracy

 Extreme simulation runtimes

W GEMS Multi2Sim ®PTLSim ™ Sniper

§a 5 |-

E 4

L
8325
—
4

Egs,,

2 o0 A, ) i, , . i,
xxxxxxx
SSEEEESSEERISS  fRUEY£REIES
EN8gTES258 5 8 & Z o g Emgn..:‘
2 J o Ec 2ciPoxx [ = o O o
£ 8 m E g E 2 o cw O © a v o
S om0 = E ET 28 wg 0 E & ® o
&

k= 2 a R [ & &
] = ] [
> 2>

@ £

INT-Spec2006 FP-Spec2006

Figure 2: Normalized L1 DCache Misses

EGEMS Multi2Sim  EPTLSim M Sniper
12] 237 I_ Jo37
392

-

| 9609 | 1239

a6
Lkl Lkl mﬂh dlll

7
N

Normalized L3 Cache Misses
CRrNWAULOw®WEO

- 2 =4
megﬁz

application ,model”: x86 machine code

INT-Spec 2006 FP-Spec 2006

04/04/2023

Figure 3: Normalized L3 Cache Misses

System-Level Performance Models for Disruptive Memory Technologies
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Offline Models: Literature Review [6]

Feature rich, > Hardly affordable during the
development cycle

> Change granularity? Use
measurements?

but no DMT support

Used for detailed simulation
Low accuracy
Extreme simulation runtimes ——» £ ==

30000

20000

Avg. Simulation Time (s)

10000

application ,model”: x86 machine code

04/04/2023

m Gem>

M Sniper

PTLsim
B Multi2Sim

MiBench INT-Spec2006 FP-Spec2006

Figure 7: Average simulation time
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Online Models: Literature Review

* Typical use case: NUMA-aware application behavior

- No. of threads, thread affinity, etc.

* Examples

- hwloc[1] -the model behind lstopo
- mctop [3] - measurement-based topology analysis
- SKB [4] - Barrelfish's versatile ,System Knowledge Base"

- Pythia [8] - Smart co-location with machine learning

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 31
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System(15GB)
* Early model from 2010
‘ L2(4096KB) ‘ ‘ L2(4096KB) ‘ ‘ L2(4096KB) ‘ ‘ L2(4096KB) ‘
o Descrl beS N U MA to pologles ‘ LI1(32KB) ‘ ‘ L1(32KB) ‘ ‘ L1(32KB) ‘ ‘ LI1(32KB) ‘ ‘ LI1(32KB) ‘ ‘ L1(32KB) ‘ ‘ L1(32KB) ‘ ‘ LI1(32KB) ‘
- Based on data from Linux sysfs | [ \0};2\ e \:l\ \0};3\ oo |
* Entities
Fig. 3. Graph@cal output of the 1stopo tool describing the topology of
- ,Node, Socket, Cache, Core, the host from Figure 1.
and more” > no meta model,
« Attributes no accelerators, |
no performance metrics,
- ,such as the cache type and size, no DMTSs
or the socket number* > Nevertheless, useful!

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 32
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hwloc — Useful Despite Its Deficiencies

* Simple performance model [2] <+ Application model

L2 [ L2 L2 |[ L2 process
bandwidth (kind of) #ﬁ“ #Sﬂn 10
same die: 1000 > e ple#s
1 hop: iz |[ 12 2 [ ez
2hops: 10 ady g ) e o
. L ;-NIC #1 ;_NIC #2 1 000
* Locality pays off T :
TABLE 111

EXECUTION TIMES (IN SECONDS) FOR NAS CG KERNEL (64 PROCESSES). Fig. 8. NAS LU (class B, 8 processes) communication pattern representation.
The coefficients on the edges represent the magnitudes in the amounts of data

Round-Robin | Placed || Improvement || exchanged between processes.
CG (Class C) 21.16 15.6 26% I
CG (Class D) 920.6 848.4 8% i . E .
« ) '# static mapping calculated with ScorcH library

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 33
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hwloc — Static Process Mapping

* SCOTCH library [7]: dual recursive bi-partitioning heuristic

application
processes

P (processes) D (domain)

Eingebettete
Softwaresysteme

10

1.Find a cut in D so that both partitions are well-balanced and have
minimal cross-partition communication costs.

2.Find a cut in P so that both partitions are well-balanced and have
minimal cross-partition data exchange.

04/04/2023
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of target
machine
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hwloc — Static Process Mapping

* SCOTCH library [7]: dual recursive bi-partitioning heuristic

P (processes) D (domain)

3. Map the corresponding partitions recursively until the target
domain consists of only one CPU core.

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 35
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hwloc — Static Process Mapping

* SCOTCH library [7]: dual recursive bi-partitioning heuristic

P (processes) D (domain)
Po,o Po,1 map Do, D; :
1000 1000 I:: : 1000 1000
H (:)—(:) 0 4 1 5
@ o ‘ PO,O - DO,O
P0,1 - D0,1
‘ P.o — Do 3|0l 2 12l g
P11 P10 P11 — D1 Do, D,
4.Result: process 0 1 2 3 4 5 6 7
core 3 7 4 0 6 2 5 1

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 36
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MCTOP [3] — A Multicore Performance Model
e Measurement-based accessible memory H Ak \ \N‘m\ \Ml s ) 5

603 cy
7.9 GB/s

598 cy 601 c 600cy | 495 369 ¢ 497 cy 502 cy
49 GBfs \ 42 (Bf 4.9 GBIs 9(:(3: H](Bf 10.7 GBJs / 8.6 GBJs
Socket 0 - 116 cycles

"execution contexts" —» 000 120 28 082 122 28 084 124 28 086 126 28 088 128 28

081 121 ™28 083 | 123 28 085 | 125 28 087 127 T28 089 129 TH28

topology inference

- Fancy MCTO P'ALG a|g0 rlthm: (a) Intra-socket topology of a socket.
Latency matrix - clustering = components - roles

V12
ons) |458cy

- Butt | = reomema | > Cool stuff, but danger
© DVES of inaccurate results

Note that DVFS is the worst enemy of mctop . In case NUMA
mctop fails to infer the topology of a processor, even
after tuning its parameters, you can try disabling DVFS

from the BIOS settings of the processor.

node

(b) Cross-socket topology.

* Portable and extensible by plugins

Figure 2: MCTOP of an 8-socket Intel processor.
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Barrelfish SKB [4] — A Versatile Framework

* Constraint Logic Programming (Prolog-based)

° . i
datagatherer prOVIdeS "fa CtS ~—» | % the bridge with a hotplug-capable slot under it
. bridge(pcie, addr(3, 0, 0), 0x1033, 0x125, 6, 4, 0,
— CPUID - cores, cache sizes, ... secondary(4)) .
— H % artificial device with vendor set to Oxffff and all
ACPI tables - memory regions, ... y ariiticia) device

' ice li device(pcie, addr(4, 3, 0), Oxffff, 0, 8, 8, 0, 0).
—~ PCle/USB enumeration — device list evice(pcie, addr x

% three small BARs, one in each space

- measurements — perfOrmance metriCS bar(addr(4, 3, 0), 0, 0, 8192, mem, prefetchable, 64).
bar(addr(4, 3, 0), 0, 0, 8192, mem, non-prefetchable, 32).
_ any device driver can add faCtS bar(addr(4, 3, ®), 0, 0, 256, io, non-prefetchable, 32).
* client library supports queries and algorithms > Nice, but the
- examples: PCI configuration, NUMA-aware multicast, infrastructure is
global resource mgnt. not for free!
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Pythia [8] — Smart Co-Location with ML

* Regression model predicts contention on shared resources

- For latency-sensitive workload combined with K batch workloads W,..., Wk

combined K—1 / individual interference
interference \B Z Cw

i=0 -~ trained coefficients: interference vulnerability

- High accuracy even with sparsely sampled combination space

Learn frequently used QoS and batch workloads

* Usage 1

Characterize Prune & Opportunistic — X
sensitivity & N sample co- Icljata Train pn')';er Schedule\ a g - ’
N contention for ) collection prediction |:‘> i V
S C e n a rl O * | QoSand batch co::?i:;t?on for multiple models o “ ‘l |‘ e ry com pa Ct Syste m
° workloads space co-locations (ool Cluster running . .
() offine Qof’ ndoming _ coocated and application model!
Maximum palicy workload workloa::ls
[:] Online QoS tolerance !

Opportunistically use the cluster to gather training data

Figure 8: The complete workflow of PYTHIA.
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Outline

* Benchmarks and models for individual components
CPU + DRAM + disruptive memory technology

* System- and application-level performance models
interaction and contention between components and applications

. [Challenges and conclusion]
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Defining “Performance Model”

Visual Formal

THEAKE
mem g Gousg;j
170ns 100ns  Migration

RMW Buf AIT Buf
16KB 16MB

CPU
Cache

Media

H Read BW 6GB/s
CPU : Optane DIMM Write BW 2GB/s

NVM (Wang et al.)

algorithm, which will be discussed in the next section

HBM (Laghari et al.) mctop (Chatzopoulos et al.)

Partially automated .
Can be built into E.g. weighted graph (V, E, W)

* Manual generation: v € V:NUMA nodes

Bench y v placement algorithms CEol

enchmark analysis, manual post-processing (U, v) o nterconnect.u—v
data sheets w(u, v) = (latency, bandwidth)

* Manual application Automated model usage

* Caninclude simulators | requires formal meta models
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Model Design

* Knowledge base

- Querying topology / performance attributes
- E.g. HBM channels, LENS, SKB, hwloc, mctop, ...

* Machine learning

- Pythia: Batch workload scheduling

- NMPO: Offloading suitability

Can (and should) we combine
Knowledge bases and ML?

04/04/2023

Eingebettete
Softwaresysteme

4

V.
s [D458cy

Near-Memory Offloading

| FLOP/s |
| GB/s |

Unseen
Application

[ instructions |

[power consumption|

Host profiling @

Trained Machine
i | Learning Model

Prediction®
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Model Use Cases

Speed >
HH:MM ms HS ns
: . Graph, Regression, Hardware
Simulation . _
Network heuristic heuristic
* Offline * Workload * Task placement ¢ Short-term data
* Verification placement placement, e.g.
* Evaluation \ 9 caching
* Simulation must e
be correct Workload/Task model?

Profiling required?

How to design scalable models?
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Conclusion

* Disruptive Memory Technologies challenge design assumptions

* System engineers should adjust models and placement algorithms

* Modeling methods, assumptions, and findings vary

04/04/2023

Lack of meta models in the literature
Inconsistent contention handling
Data source: data sheets vs. micro-benchmarks

Profiling / Describing application requirements

= Lots of room for improvement 2377
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