
System-Level Performance Models for
Disruptive Memory Technologies

Olaf Spinczyk, Daniel Friesel

Embedded Software Systems Group

Winter School on Operating Systems
(WSOS 2023)

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 2

Performance Models ...
● Often implicit part of algorithms

– Compute/data placement in systems
– Goal: min latency, max throughput, ...

● E.g. data replacement policy in conventional memory hierarchy:
– Goal: minimize data access latency on CPU
– Performance model Proxy: minimize #misses in CPU caches→
– Lower bound: OPT (Bélády / evict farthest-in-the-future)
– Common strategy: Least Recently Used

CPU Caches

Regs

DRAM

Disks

B
ps

KB, MB
ns

GB
µs

TB
ms

Capacity

Latency

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 3

… for Disruptive Memory Technologies
● New technologies challenge assumptions

– High-Bandwidth Memory (HBM)
– Non-Volatile RAM (NVRAM)

● Similar size/latency of layers
– Cache bypass becomes feasible
– Minimizing #misses no longer suitable [9]
– OPT data replacement algorithm is no longer optimal [10]
– LRU/FCFS may be insufficient new policies needed→

new performance models needed→

CPU Caches

Regs

DRAM

Disks

HBM

NVRAM

Capacity
Latency

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 4

System-Level Models

registersCaches

regsregsRegs Multi-core and many-core CPUs

Disks

Remote Storage

Disks

Remote Storage

HBM HBM
 DRAM

NVRAM NVRAM

DRAM

Novel memory
technologies have
different properties

Applications contend
for shared resources

Near-Memory Computing
(NMC) can improve parallelism

RDMA

Remote Direct Memory Access
(RDMA) turns this into Giza

Non-Uniform Memory Access
(NUMA)

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 5

Outline
● Benchmarks and models for individual components

CPU + DRAM + disruptive memory technology

● System- and application-level performance models
interaction and contention between components and applications

● Challenges and conclusion

Caveat Emptor:
This is not a comprehensive survey

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 6

Individual Components
CPU and DRAM coupled with ...

● Non-Volatile Memory (NVRAM)

● High-Bandwidth Memory (HBM)

● Remote Direct Memory Access (RDMA)

● Near-Memory Computing (NMC)

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 7

Non-Volatile Memory (NVRAM)
● E.g. Intel Optane DC Persistent Memory (DCPMM)

– DDR4 modules with persistent memory
– Byte-adressable, larger and cheaper than DRAM
– Discontinued, successor likely via PCIe

● Applications:
– Main memory with DRAM cache
– DRAM extension
– Storage for databases and file systems

● Latency ≈ DRAM
● Bandwidth ≈ NVMe Disks

Cache

Reg

DRAM

Disks

HBM

NVRAM

Source: Intel

≟

 ≟

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 8

Non-Volatile Memory (NVRAM)
● Breaks assumptions about memory hierarchy

– Limited write endurance
– Asymmetric: read latency ≠ write latency

 ⇒ Suitable data placement strategies?

Cache

Reg

DRAM

Disks

HBM

NVRAM
≟

 ≟

DIMM Capacity R/W Latency R/W Bandwidth Endurance

DRAM 8 .. 64 GB 70 ns 75 GB/s ∞

NVRAM 128 .. 512 GB ~200 / ~600 ns 8 / 3 GB/s ~1M writes
Source: [10]

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 10

NVRAM: More than just slower RAM [11]
● Simulators (e.g. PMEP, Ramulator) do not reflect reality
● Latency and bandwidth are not constant

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 11

● Microbenchmarks queues and buffers between CPU and NVRAM→
● R/W Pending Queue
● Load-Store Queue

(reordering write combining)→
● Read-Modify-Write Buf.

(Media uses 256B blocks)

● Addr. Indirection Trans.
(wear-leveling)

NVRAM: Caches and Queues [11]

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 12

● NVRAM is a shared resource
● Contention between applications

 Side-channel attacks→

NVRAM Models: Security [12]

Should performance models
incorporate security information?

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 13

High-Bandwidth Memory (HBM)
● 3D-stacked DRAM close to CPUs

– E.g. Fujitsu A64FX, FPGAs, Intel Knights Landing (KNL)
– Apple M1/M2: on-chip DDR5

● Applications:
– HBM as DRAM cache
– HBM as separate memory

● Latency ≈ DRAM
● Bandwidth > DRAM

Cache

Reg

DRAM

Disks

HBM

NVRAM

Source: Fujitsu (A64FX)

≟

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 14

HBM as Last-Level Cache [9]
● No hardware cache control
● Two sources of contention

– Data placement in HBM
 Replacement algorithm→

– Data transfers to/from DRAM
 Scheduling algorithm→

● Channel model
● KNL: LRU placement still useful; FCFS DRAM access provably bad

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 15

HBM Benchmarks [13]
● KNL benchmarks: max. sustained bandwidth
● Same architecture, different results
● ≠ Channel model (single-threaded view,

no contention / parallelism)

Should performance models take a
single- or a multi-threaded view?

What about contention?

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 16

● High-Bandwidth Interconnect (≥100 Gbit/s)
– e.g. InfiniBand
– Connected via PCIe, DMA capable
– Supports DRAM and NVRAM, at least

● High-capacity, high-latency
● Interconnect ≈ CPU/Socket fabric
● E.g. HPE: 160 TB of fabric-attached

shared memory

Cache

Reg

DRAM

Disks

HBM

NVRAM

Remote Direct Memory Access (RDMA)
Cache

Reg

DRAM

Disks

HBM

NVRAM

Cache

Reg

DRAM

Disks

HBM

NVRAM

Source: Kimberley Keeton,
NVMW’19 Keynote

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 17

RDMA Network Interface [14]
● RDMA NIC handles transfers itself

– Bypasses host CPU / OS kernel
– Writes L3 Cache (DDIO) or RAM→

● One R/W queue pair per application
– Work Queue Entries (WQEs)

 data transfers≙
● One completion queue for entire NIC
● Built-in scheduler manages queues and transfers

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 18

● RDMA NIC associates transfers
(queues) with network connections
– Built-in metadata cache
– Too many connections (RC, UC)

 cache thrashing→
● ≠ Conventional network approach:

Resource Utilization Maximization
● Proposal: Connection-aware

workload placement

RDMA: Connection Cache [15]
Performance model:

NIC with max #connections

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 19

RDMA: Scheduler [15]
● RDMA transfers run to

completion (no preemption)
● Large transfers can cause delays
● Proposed solution: Virtual RDMA

– Priority-aware, cooperative abstraction layer and scheduler: “Avatar”
– Aggregate connections one transfer per target (reduce cache thrashing)→
– Split up large transfers fine-grained scheduling (reduce contention effects)→How to incorporate performance models of RDMA targets?

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 20

Near-Memory Computing (NMC)
● Memory-bound workloads limited by RAM

latency / bandwidth add CPUs to memory→
● Past: experiments with FPGAs and logic circuits
● Recently: UPMEM PIM (“Processing in Memory”)

– DDR4 memory with on-chip 32-bit CPUs
– Limited hardware support

(needs BIOS patches)
– Limited power supply low clock rate→
– OS API: Regular DRAM ≠ PIM DRAM

Cache

Reg

DRAM

Disks

HBM

NVRAM

Source: UPMEM

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 21

UPMEM PIM
● 8 GB DDR4
● Custom API
● 128× CPU @ ~350 MHz

– a.ka. DPU / „Data Processing Unit“
– Up to 24 Threads (Tasklets) each
– Manual cache control: IRAM / WRAM ② ③
– 11 sequential pipeline levels ⑦
– Threads can communicate / synchronize

● No shared memory / IPC between DPUs

Source: UPMEM

How to find
suitable workloads?

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 22

PrIM Microbenchmarks [16]
● Comprehensive performance evaluation

– Arithmetic throughput, op. intensity
– WRAM („Cache“) and DRAM transfers
– Stride and operand sizes

● Models: Linear regression + prose
– Hints for developers, e.g.
– ≥11 Tasklets for arithmetic saturation
– Best for integer addition/subtraction
– Suitable for memory-bound tasks

Roofline

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 23

NMC: Predicting offloading suitability [17]
● Given an application: will it benefit from NMC?

?

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 24

Outline
● Benchmarks and models for individual components

CPU + DRAM + disruptive memory technology

● System- and application-level performance models
interaction and contention between components and applications

● Challenges and conclusion

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 25

Motivation: Systems with Combined DMTs
● The future will bring the new technologies all at once

… and system software must handle them efficiently!
● Example: RDMA + NVM interactions [5]

RDMA WRITE
to NVM

Can we reach a full 100Gbps?

RAM
NVM RAM
NVM

No

massive improvements by taking
the architecture into account

H1. Avoid cross-socket NVM
accesses

H3. Disable DDIO
H5. Use XPLine granularity

for writes
H6. Use PCIe DW granularity

(64B) for small writes

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 26

Wanted: A Full-System and Application Model
● Features of full-system model

– Description of hardware components
● Detailed sub-models, especially for DMTs
● Memory: capacity, alignment requirements, ...
● Compute units: processing power,

cache sizes / strategy, ...

– Topology of interconnects
● Bandwidth limits, latencies, arbitration mechanisms, …

● Features of application model
– Structure, thread interaction, resource demands, ...

● Purpose
– Offline planning/optimization compiler, simulator, design space exploration→
– Online placement/scheduling operating system, database management, language runtime→

same level of
abstraction

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 27

Offline Models: Literature Review [6]
● Feature rich,

but no DMT support

● Used for detailed simulation

● Low accuracy

● Extreme simulation runtimes

application „model“: x86 machine code

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 28

Offline Models: Literature Review [6]
● Feature rich,

but no DMT support

● Used for detailed simulation

● Low accuracy

● Extreme simulation runtimes

application „model“: x86 machine code

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 29

Offline Models: Literature Review [6]
● Feature rich,

but no DMT support

● Used for detailed simulation

● Low accuracy

● Extreme simulation runtimes

application „model“: x86 machine code

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 30

Offline Models: Literature Review [6]
● Feature rich,

but no DMT support

● Used for detailed simulation

● Low accuracy

● Extreme simulation runtimes

application „model“: x86 machine code

▶ Hardly affordable during the
development cycle

▶ Change granularity? Use
measurements?

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 31

Online Models: Literature Review
● Typical use case: NUMA-aware application behavior

– No. of threads, thread affinity, etc.

● Examples
– hwloc [1] – the model behind lstopo

– mctop [3] – measurement-based topology analysis

– SKB [4] – Barrelfish’s versatile „System Knowledge Base“

– Pythia [8] – Smart co-location with machine learning

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 32

hwloc [1] — The Model Behind lstopo
● Early model from 2010
● Describes NUMA topologies

– Based on data from Linux sysfs

● Entities
– „Node, Socket, Cache, Core,

and more“

● Attributes
– „such as the cache type and size,

or the socket number“

▶ no meta model,
no accelerators,
no performance metrics,
no DMTs

▶ Nevertheless, useful!

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 33

hwloc — Useful Despite Its Deficiencies
● Simple performance model [2]

● Locality pays off

● Application model
process

amount of data

bandwidth (kind of)
same die: 1000
1 hop: 100
2 hops: 10

static mapping calculated with SCOTCH library

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 34

hwloc — Static Process Mapping
● SCOTCH library [7]: dual recursive bi-partitioning heuristic

0 1 2 3

7 6 5 4

10

10

100

1000 1000 1000

1000 1000 1000

P (processes)

map

P → D

D (domain)

0 41000

3 71000

1 51000

2 61000

100 100

100

100

10

CPU cores
of target
machine

application
processes

1.Find a cut in D so that both partitions are well-balanced and have
minimal cross-partition communication costs.

2.Find a cut in P so that both partitions are well-balanced and have
minimal cross-partition data exchange.

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 35

hwloc — Static Process Mapping
● SCOTCH library [7]: dual recursive bi-partitioning heuristic

0 1 2 3

7 6 5 4

10

10

1000 1000 1000

1000 1000 1000

P (processes)

map

P0 → D0

P1 → D1

D (domain)

0 41000

3 71000

1 51000

2 61000

100 100

3.Map the corresponding partitions recursively until the target
domain consists of only one CPU core.

P0

P1

D0 D1

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 36

hwloc — Static Process Mapping
● SCOTCH library [7]: dual recursive bi-partitioning heuristic

0 1 2 3

7 6 5 4

1000 1000

1000 1000

P (processes)

map

P0,0 → D0,0

P0,1 → D0,1

P1,0 → D1,0

P1,1 → D1,1

D (domain)

0 41000

3 71000

1 51000

2 61000

P0,0

D0,0 D1,0

P0,1

P1,1 P1,0

D0,1 D1,1

4.Result: process 0 1 2 3 4 5 6 7

core 3 7 4 0 6 2 5 1

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 37

MCTOP [3] — A Multicore Performance Model
● Measurement-based

topology inference
– Fancy MCTOP-ALG algorithm:

Latency matrix clustering components roles→ → →
– But:

● Portable and extensible by plugins

accessible memory

“execution contexts”

NUMA
node

▶ Cool stuff, but danger
of inaccurate results

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 38

Barrelfish SKB [4] — A Versatile Framework
● Constraint Logic Programming (Prolog-based)
● datagatherer provides „facts“

– CPUID cores, cache sizes, …→
– ACPI tables memory regions, …→
– PCIe/USB enumeration device list→
– measurements performance metrics→
– any device driver can add facts

● client library supports queries and algorithms
– examples: PCI configuration, NUMA-aware multicast,

global resource mgnt.

“system knowledge base”

▶ Nice, but the
infrastructure is
not for free!

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 39

Pythia [8] — Smart Co-Location with ML
● Regression model predicts contention on shared resources

– For latency-sensitive workload combined with K batch workloads W0,…,WK-1

– High accuracy even with sparsely sampled combination space

● Usage
scenario:

BS=∑
i=0

K−1

cW i
BW i

combined
interference

individual interference

trained coefficients: interference vulnerability

▶ Very compact system
and application model!

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 40

Outline
● Benchmarks and models for individual components

CPU + DRAM + disruptive memory technology

● System- and application-level performance models
interaction and contention between components and applications

● Challenges and conclusion

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 41

Defining “Performance Model”
Prose Visual Formal

HBM (Laghari et al.)

NVM (Wang et al.)

mctop (Chatzopoulos et al.)

E.g. weighted graph (V, E, W)
v V : NUMA nodes∈
(u, v) E Interconnect u – v∈ ⇔
w(u, v) = (latency, bandwidth)

● Manual generation:
Benchmark analysis,
data sheets

● Manual application
● Can include simulators

● Partially automated
● Can be built into

placement algorithms
● manual post-processing

Automated model usage
requires formal meta models

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 42

Model Design
● Knowledge base

– Querying topology / performance attributes
– E.g. HBM channels, LENS, SKB, hwloc, mctop, …

● Machine learning
– Pythia: Batch workload scheduling
– NMPO: Offloading suitability

Can (and should) we combine
Knowledge bases and ML?

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 43

Model Use Cases

Simulation
Graph,

Network
Regression,

heuristic
Hardware
heuristic

Speed
HH:MM ms µs ns

● Offline
● Verification
● Evaluation

● Simulation must
be correct

● Workload
placement

● Task placement ● Short-term data
placement, e.g.
caching

Workload/Task model?
Profiling required?

How to design scalable models?

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 45

Conclusion
● Disruptive Memory Technologies challenge design assumptions
● System engineers should adjust models and placement algorithms
● Modeling methods, assumptions, and findings vary

– Lack of meta models in the literature
– Inconsistent contention handling
– Data source: data sheets vs. micro-benchmarks
– Profiling / Describing application requirements

 ⇒ Lots of room for improvement

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 46

References (1)
[1] F. Broquedis, et al., hwloc: A Generic Framework for Managing Hardware

Affinities in HPC Applications, in 18th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP 2010), Pisa, 2010,
doi: 10.1109/PDP.2010.67

[2] G. Mercier, J. Clet-Ortega. Towards an efficient process placement policy for
MPI applications in multicore environments. Europvm/mpi 2009, Sep 2009,
Espoo, Finland. pp 104--115, 10.1007/978-3-642-03770-2_17 .⟨ ⟩

[3] G. Chatzopoulos, R. Guerraoui, T. Harris, and V. Trigonakis. 2017. Abstracting
Multi-Core Topologies with MCTOP. In Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys '17). Association for Computing
Machinery, New York, NY, USA, 544–559.
https://doi.org/10.1145/3064176.3064194

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 47

References (2)
[4] A. L. Schüpbach. 2012. Tackling OS Complexity with Declarative Techniques.

ETH Zürich.
[5] X. Wei, X. Xie, R. Chen, H. Chen, and B. Zang. 2021. Characterizing and

Optimizing Remote Persistent Memory with RDMA and NVM. USENIX Annual
Technical Conference.

[6] A. Akram and L. Sawalha. 2016. A Comparison of x86 Computer Architecture
Simulators. Computer Architecture and Systems Research Laboratory
(CASRL). 1. https://scholarworks.wmich.edu/casrl_reports/1

[7] F. Pellegrini. 2008. Scotch and libScotch 5.1 User’s Guide. INRIA Bordeaux Sud-
Ouest.

https://scholarworks.wmich.edu/casrl_reports/1

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 48

References (3)
[8] R. Xu, S. Mitra, J. Rahman, P. Bai, B. Zhou, G. Bronevetsky, and S. Bagchi.

2018. Pythia: Improving Datacenter Utilization via Precise Contention Prediction
for Multiple Co-located Workloads. In Proceedings of the 19th International
Middleware Conference (Middleware '18). Association for Computing
Machinery, New York, NY, USA, 146–160.
https://doi.org/10.1145/3274808.3274820

[9] R. Das, et al. 2020. How to Manage High-Bandwidth Memory Automatically. In
Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA’20)

[10] L. Zhang, R. Karimi, I. Ahmad, Y. Givfusson. 2020. Optimal Data Placement for
Heterogeneous Cache, Memory, and Storage Systems. In Proc. ACM Meas. Anal.
Comput. Syst., Vol. 4, No. 1

https://doi.org/10.1145/3274808.3274820

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 49

References (4)
[11] Z. Wang, et al. 2020. Characterizing and Modeling Non-Volatile Memory

Systems. In Proceedings of the 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO)

[12] Z. Wang, et al. 2023. NVLeak: Off-Chip Side-Channel Attacks via Non-Volatile
Memory Systems. In USENIX Security Symposium

[13] M. Laghari, D. Unat. 2017. Object Placement for High Bandwidth Memory
Augmented with High Capacity Memory. In Proceedings of the 29th
International Symposium on Computer Architecture and High Percormance
Computing (SBAC-PAD)

[14] D. Shen, et al. 2020. Distributed and Optimal RDMA Resource Scheduling in
Shared Data Center Networks. In IEEE Conference on Computer
Communications (INFOCOM)

04/04/2023 System-Level Performance Models for Disruptive Memory Technologies 50

References (5)
[15] H. Qiu, et al. 2018. Toward Effective and Fair RDMA Resource Sharing. In

APNET ‚18: 2nd Asia-Pacific Workshop on Networking
[16] J. Gómez-Luna, et al. 2022. Benchmarking a New Paradigm: Experimental

Analysis and Characterization of a Real Processing-in-Memory System. In IEEE
Access, Vol. 10, 2022

[17] S. Corda, et al. 2021. NMPO: Near-memory Computing Profiling and
Offloading. In 24th Euromicro Conference on Digital System Design (DSD)

