
PUBLIC

Dr. Norman May,
SAP SE

Why are Disruptive Memory
Technologies relevant for the
SAP HANA database?

2CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Background on me and SAP HANA

Evolution: Challenges on Large NUMA Systems
 SAP HANA NUMA-aware task scheduling in a Nutshell
 Problem 1: Scalability on MANY core machines
 Problem 2: Performance of initial memory allocations
 Problem 3: SAP HANA Crash performance
 Problem 4: DRAM is not reliable

Evolution: Persistent Memory in SAP HANA
 Byte-addressable, but still adoption needed
 Problem: hyperscaler support, PMEM roadmap discontinued

Future: Use Cases for Compute Express Link

Agenda

3CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Chief Architect for the SAP HANA database core

Focus on workload management (CPU, memory) and query processing

Involved with hardware certification of SAP HANA

Adviser for PhD student in SAP HANA Campus

I am a Database Guy

4CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

System Architecture Perspective

Hardware

Operating System /
VM

Database

Application
Server

Database
Application

Presenter-Notizen
Präsentationsnotizen
walk-through bottom-up
Emphasize partner-orientation for OS and hardware
Mention open architecture above SAP HANA with emohasis on SAP software

5CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

SAP HANA (aka NewDB) pioneering …
 query processing on multi-core
 Vectorized query processing
 In-memory processing in a column store
 Hybrid analytical and transactional data

management (HTAP)a

Challenges
 At startup:

– (Almost) all data must be loaded – terabytes
– Large amounts of memory allocated (~50%)
 Performance of queries suffers until data

loaded
– No results until all required tables loaded
 Single-process architecture

– Restarts very costly

The „Genesis“ of SAP HANA as In-memory Database

Evolution: Challenges on Large NUMA
Systems
SAP HANA NUMA-aware task scheduling in a Nutshell

Problem 1: Scalability on MANY core machines

Problem 2: Performance of initial memory allocations

Problem 3: Process destruction time (SAP HANA crash performance)

Problem 4: DRAM is not reliable

7CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Large
– 12-48TB DRAM (more planned)
– 8-32 CPU sockets (Intel Xeon, IBM Power)
– up to ~1792 logical cores
– Still a single process using all resources

Real challenge

Small
– 32GB-4TB DRAM
– 1-4 CPU sockets (Intel Xeon)
– 2 (v)CPU cores to >50 physical cores per socket
– A single process using all resources

Typical SAP HANA systems

Scaling up SAP HANA

8CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

NUMA Topology of a 32-Socket System
(NUMA = Non-Uniform Memory Access)

1 Chassis HPE NUMA link topology

Local Latency: 85 ns
Local Bandwidth: 106 GB/s

1-hop Latency: 151 ns
1-hop Bandwidth: 17 GB/s

Max-hop Latency: 360 ns
Max-hop Bandwidth: 14 GB/s

9CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Custom-built memory
management

NUMA-aware data placement:
 Table data allocated on certain

NUMA node
 Hash-based default or manual

via DDL

NUMA-aware task scheduling:
 Table access operations

scheduled where the data is
allocated

 Job queues per NUMA node
 Job worker threads can be

bound to NUMA nodes
 Task stealing to balance NUMA

node contention

Understanding NUMA-aware Statement Execution in SAP HANA

Session Layer

“statement”
“(simple) OLTP”

Jobqueue

“may delegate statement execution”

SQLExecutor Thread-Pool

HANA system-tasks

Thread-Pool

“assign available threads”

“assign available threads”

Application A

JobExecutor
“(complex) OLAP”

POP

Session Context for Application A

“set statement-context
per session“

Information about resource limits for memory, execution concurrency, execution priority for statements

“read config data”“

.ini files

system-tables

POP

POP

Execution Plan

10CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Red: Locking, Waiting
 In SAP HANA leads to

thread creation
(staircase)

Blue: Task scheduling
overheads

Green: threads perform
useful work

SAP-internal benchmark on PPC (608 cores on 8 sockets)
before optimization

Presenter-Notizen
Präsentationsnotizen
8 socket system – threads as vertical bars
X-axis is time
Analysis
Lots pf synchronization (red)
Thread spawning (staircase pattern)

11CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Reduced locking
 fewer threads

More useful work performed

SAP-internal benchmark on PPC (608 cores on 8 sockets)
after optimization

Presenter-Notizen
Präsentationsnotizen
Less locking
No thread spawning
But maybe under-utilized system
Very laborious effort to optimize code

12CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Problem 1: Scalability on MANY core machines

We meet the same scalability issues whenever number of cores increases:
– Latches
– Data structures like B-tree
– Operations like metadata lookup

Question: How to evolve a database in an evolutionary way to avoid optimization cycles every 2-3
years?

– Can we avoid a fundamental rewrite of the database engine?
– Identify data structures and algorithms with good performance and scalability trade-off
– Choice of locking primitives?
– Scalability and supportability of lock-free data structures and hardware-transactional memory?

13CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Problem 2: Initial Allocation (1/2)

Simulation experiment:
– Allocate and touch memory in n threads in

parallel:
allocated = 0;
while (allocated < SIZE) {

ptr = mmap(0, BLOCKSIZE, …, FLAGS, …);
touch_every_cacheline(ptr, BLOCKSIZE);
touch_every_cacheline(ptr, BLOCKSIZE);
blocks.push_back(ptr);
allocated += BLOCKSIZE;

}

– Deallocate memory (optional):
for (ptr : blocks)

munmap(ptr, BLOCKSIZE);

mmap() flags:
– MAP_PRIVATE | MAP_ANONYMOUS
– MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE

– The above with MAP_HUGE_2MB

Block sizes:
– 1 to 256K pages (4KB-1GB), powers of two

Thread counts:
– 1-32, powers of two

Test Systems:
– 96GB DDR4-2133 DRAM, 2 sockets, 24 log.

cores
– 16TB RAM, 32 sockets, 1152 logical cores

14CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Problem 2: Initial Allocation (2/2): On-Demand Allocation

0

50

100

150

200
m

ic
ro

se
c

pe
r p

ag
e;

 lo
w

er
 is

 b
et

te
r

allocate block size (pages); one bar per #threads

mmap(MAP_PRIVATE | MAP_ANONYMOUS), touch, touch;
1-32 threads; 24 cores 96GB RAM 2xE5-2643 Haswell SLES 12.0

3.12.60-52.54-default
touch1/page
mmap/page

This is
256MB/s/thread
or 8GB/s total
(out of 136GB/s)

Typical
initial
mmap()
sizes

On-demand allocation: Scalability problems
 In mmap() itself
 In page fault

Presenter-Notizen
Präsentationsnotizen
Mmap: http://man7.org/linux/man-pages/man2/mmap.2.html

MAP_PRIVATE Create a private copy-on-write mapping. Updates to the mapping are not visible to other processes mapping the same file, and are not carried through to the underlying file. It is unspecified whether changes made to the file after the mmap() call are visible in the mapped region.

MAP_ANONYMOUS The mapping is not backed by any file; its contents are initialized to zero. The fd argument is ignored; however, some implementations require fd to be -1 if MAP_ANONYMOUS (or MAP_ANON) is specified, and portable applications should ensure this. The offset argument should be zero. The use of MAP_ANONYMOUS in conjunction with MAP_SHARED is supported on Linux only since kernel 2.4.

15CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Problem 3: Process Destruction Time (1/2)

Simple Experiment:
int child_pid = fork();
if (child_pid) { // parent

wait_for_signal_from_child();
ts1 = timestamp();
kill(child_pid, SIGKILL);
waitpid(child_pid, NULL, 0);
ts2 = timestamp();
print_time(ts2 – ts2);

} else { // child
ptr = mmap(n * GB);
touch(ptr, n * GB);
send_signal_to_parent();
while (true) pause();

}

Observation:
– Process exit time linear to allocated

memory
– Processed on single core
– 2MB hugepages speed up ~200x, but

not used in SAP HANA

0

5

10

15

20

25

10
24

20
48

30
72

40
96

51
20

61
44

71
68

81
92

92
16

10
24

0

11
26

4

12
28

8

13
31

2

14
33

6

15
36

0

to
ta

l t
im

e
in

 m
in

ut
es

GB of RAM used

mmap, touch, kill
1152 cores 16TB RAM 32xE7-8890 v3 Haswell EX SLES 11.3

3.0.101-0.47.71-default

Dealloc speed: ~11GB/s

16CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

 Parallel memory deallocation in separate
process virtually removes the defunct-state issue

 Selective pre-load of tables relevant for
application improves perceived availability

System downtime induced by crashes &
restart​
 Cluster managers don’t help usually​

 Failover not even automated in some cases​

 Cloud: False positives / negatives due to ping
service​

Restart time dominated by
Memory deallocation in defunct state of old

process because of locks in the Linux kernel

 Loading data into memory & memory
allocation

Problem 3: Process Destruction Time (2/2)

17CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Do the math:
 32 sockets x 12 DRAM banks

= 384 DRAM DIMMs
 384 DRAM SIMMs x 10 chips

= 3840 chips
 Chances increase for DIMM failures

DRAM failures lead to crashes
RAS features to the rescue?

Problem 4: Many DRAM DIMMs Fail

18CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Summary: Memory Management Pain Points

Memory management in Linux does not scale to large processes:
– Virtual memory allocation does not scale
– Reallocating memory by scraping up free chunks causes fragmentation in mappings

Performance problems seem to be related to process address space/page table locks
SAP HANA is not the main target for Linux

Performance tuning on large scale-up systems is painful:
– Resolving lock contention is very tedious

What are good programming abstractions?

Evolution: Persistent Memory in SAP
HANA
Byte-addressable, but adoption needed

Problem: hyperscaler support, PMEM roadmap discontinued

20CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Adopting In-Memory Column Store to Persistent Memory

0

1

1

2

2

3

0 INTEL
1 Siemens
2 SAP
3 IBM

1

0

0

0

0

1

0 Europe
1 USA

0

1

2

0

0

0

0 A
1 B
2 C

Dictionary per column

Data Vector
Stored in one memory chunk
 data locality for fast scans0

1

2

3

4

5

Company
[CHAR50]

Region
[CHAR30]

Group
[CHAR5]

INTEL USA A

Siemens Europe B

Siemens Europe C

SAP Europe A

SAP Europe A

IBM USA A

Row-oriented table „Company“

Column headers & metadata

RowID Company Region Group

Column-oriented table „Company“

0 3 4 5

1

2

optional Inverted
Index

rows

 Need to replace pointers in DRAM by offsets …

21CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

HANA uses PMEM for the large read-optimized main fragment, i.e.
 The write-optimized delta fragment remains in DRAM
 DRAM is used for transient data, e.g. for query processing

HANA still writes the table data to disk
 because used by disk-based replication tools
 as additional layer of reliability
 At restart no loading from disk needed, just follow the offsets in PMEM  faster restart times

HANA uses dedicated allocators for managing PMEM
 PMEM „base path“ assigned to PMEM devices using DAX-fs – usually per socket
 Keep common byte-addressable interface for memory-based data structures
 Careful programming needed, e.g. memory barriers 1st generation. Extended asynchronous DRAM refresh

(eADR) with Intel Optane PMem 200 series handles flushing caches.

Design Decisions for PMEM in SAP HANA

22CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

PMEM was not adopted by hyperscalers
 No good match for Docker-based environments because PMEM sticks with the machine …
 Speculation: price strategy by Intel hindered broader adoption

PMEM to be discontinued
 Intel Optane 300 series canceled, i.e. for SaphireRapids and later need to find alternative …
 Intel Optane 200 series and earlier still supported by Intel and SAP on Ice Lake / CooperLake an earlier for

SAP HANA on-premise

The investments were not in vein: pointer-less main fragment
 Used in SAP HANA for „fast restart option“ where the data is stored in shared memory
 Useful for use cases with memory pools in CXL – see later

Problem: Hyperscaler support, PMEM roadmap discontinued

Future: Compute Express Link

How to leverage PMEM investments?

Source: Samsung

https://news.samsung.com/global/samsung-unveils-industry-first-memory-module-incorporating-new-cxl-interconnect-standard

24CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Broad interest by hyperscalers and HW vendors 

Mainly interested in memory pools (CXL 2.0) – see use cases
 Open question: Linux APIs for (de-) registering memory from the pool

Investments for PMEM can be leveraged

Opportunities for CXL-attached memory

25CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Pool

Main

CXL Scenario 1: “Upgrade”

Temp

Temporarily use more memory from a pool during software upgrade, e.g. S/4 HANA

Main
Main’

Temp

Main’

Temp

26CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

CXL Scenario 2: “Use idle compute”

Pool

Mem A

Idle

Comp A

Mem A

Comp A

Comp B

Mem B
Comp A could be a SAP HANA indexserver

The idle compute capacity could be used by
an Elastic Read Node, i.e. another SAP
HANA process.

The additional memory required is provided
from a memory pool, e.g. binding the
memory of Comp B to the CXL-based
memory pool

27CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Initial Performance Numbers

Minseon Ahn et. al: Enabling CXL Memory Expansion for In-Memory Database Management Systems, DaMoN 2022

28CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

29CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Effective task scheduling on large machines

Scalable synchronization primitives

How to „fix“ Linux memory management
 Scalable memory allocation and de-allocation
 Bulk operations, e.g. for memory remapping

Life beyond Intel Optane persistent memory
 Memory pools with Compute Express Link (CXL)

– Coherent OS APIs
– Feasible database use cases

Conclusion: Lot‘s of open questions on OS level

Norman May
norman.may@sap.com
https://www.linkedin.com/in/normanmay/

https://www.linkedin.com/in/normanmay/

	Why are Disruptive Memory Technologies relevant for the SAP HANA database?
	Agenda
	I am a Database Guy
	System Architecture Perspective
	The „Genesis“ of SAP HANA as In-memory Database
	Evolution: Challenges on Large NUMA Systems
	Scaling up SAP HANA
	NUMA Topology of a 32-Socket System�(NUMA = Non-Uniform Memory Access)
	Understanding NUMA-aware Statement Execution in SAP HANA
	SAP-internal benchmark on PPC (608 cores on 8 sockets)�before optimization
	SAP-internal benchmark on PPC (608 cores on 8 sockets)�after optimization
	Problem 1: Scalability on MANY core machines
	Problem 2: Initial Allocation (1/2)
	Problem 2: Initial Allocation (2/2): On-Demand Allocation
	Problem 3: Process Destruction Time (1/2)
	Problem 3: Process Destruction Time (2/2)
	Problem 4: Many DRAM DIMMs Fail
	Summary: Memory Management Pain Points
	Evolution: Persistent Memory in SAP HANA
	Adopting In-Memory Column Store to Persistent Memory
	Design Decisions for PMEM in SAP HANA
	Problem: Hyperscaler support, PMEM roadmap discontinued
	Future: Compute Express Link
	Opportunities for CXL-attached memory
	CXL Scenario 1: “Upgrade”
	CXL Scenario 2: “Use idle compute”
	Initial Performance Numbers
	Foliennummer 28
	Conclusion: Lot‘s of open questions on OS level
	Foliennummer 30

