
What not where

Peter Alvaro

Outline

1. Twizzler
a. The state of the art
b. Trends: far out memories
c. The data-centric operating system
d. Organizing memory in Twizzler
e. Two case studies

2. Data-centric security
3. Distribution
4. Sharing - the good and the bad
5. A new programming model for long-lived data and short-lived compute

The state of the art

The state of the art

What are computers for?

The agent
AKA the process
AKA the ACTOR
AKA the host,
[...]

It's all about agents

What is a process?

Virtual memory

File descriptors

Security context

[...]

Computation

Context required
to access data

OK, but what's a process really for?

The state of the art: Systems programming

The state of the art: Systems programming

The state of the art: Systems programming

The state of the art: Systems programming

The state of the art: Systems programming

The state of the art: Systems programming

Your algorithm here

"Systems programming"

"Systems programming"

The memory hierarchy

Observe these wild trends

Trends
Persistent storage is getting ever closer

Memory is moving farther away

One obvious point of inflection

~1-10 ms

sys_read

~100-300 ns ~1 us

Growing, becoming persistent Outdated interface Cannot compute on directly

Trends

Storage is CONVERGING?

Compute is DIVERGING!

AR
M

Twizzler boils this ocean

No kernel-mediated I/O

Persistent data should be operated on directly and like memory

No transient pointers

Pointers should last forever and have the same meaning anywhere

"Data-centric" operating systems

Persistent data should be operated on directly and like memory

Pointers should last forever and have the same meaning anywhere

The death of the process

The Process
Born 1969
Died 2020

Virtu
al m

emory

File descr
iptors

Secu
rity

 co
ntext

[...
]

Organizing memory in Twizzler

Data Objects, references, context

A B

Pointers may be cross-object: referring to data within a different object

object-id offset

Data Objects and references

FOT entry offset

64-bits

FOT Data

Object layout Pointer layout

Dereference

1 <offset>

1 A rw-

2 B r--

O

FOT

A

Compatibility (but second)

application

musl* libc

libtwz

twix

Twizzler kernel

view management,
pointer translation,
consistency primitives

object & thread
management, trusted
computing base

* modified musl to change linux syscalls into function calls

Linux syscall
emulation

data
object

userspace
kernelspace

POSIX access
(read/write)

direct access
(memory-style)

metadata & FOT
management

create, delete, etc.
physical mapping

Some consequences

References are based on identity rather than location

Objects are self-contained and pointers never swizzle

A "galactic" 128-bit object space

Case studies

Key / value storage done right

Index Data

Lookup returns
direct pointers

250 lines of simple C code is all you need

Evolution 1: access control

Data2

Index

Data1

r--

Evolution 2: secondary indices

Data2

Index

Data1

r--

Index

Success: easier programming without a penalty

Porting SQLite

B-Tree LMDB

SQLite top SQLite top

Linux Linux

Memory-mapped
files PMDK

SQLite top

Linux

unixkv

SQLite top

Twizzler

twizkv

unixrbt

twizrbt

Native SQLightning PMDK Twiz

POSIX
I/O

LMDB

Not so shabby for legacy support

Security in a data-centric OS

Security Contexts

Protection information encoded as ordinary data objects

(containing cryptographically-signed capabilities)

Threads are associated with these security contexts.

Privilege is not accretive: a thread has one active security context.

Security Contexts

Security Policy

Is directly created and manipulated by users

Is interpreted by the kernel

Is enforced by hardware

Security Contexts reify agency as policy

Capabilities and key management

DLG ::= {
 receiver, provider : ObjectID,
 mask, flags : BitField,
 gatemask : Gates, revocation : Revoc, siglen : Length, datalen : Length, (DLG|CAP), sig : u8[]

}

Bootstrapping

The death of the superuser

Superuser
Born 1969
Died 2022

Secure Gated APIs

Secure Gated APIs
Protected library calls

System calls (but for userspace)

Agency, without the overhead of agents

For example: IPC without the kernel

Use raw objects like shared memory?

Secure Gated APIs

Secure Gated APIs

Restricting jumps

Communication links in userspace

Distributing Twizzler

Computation

P

D

L

Computation

P

D

L

Computation

P

D

L

Computation

P

D

L

X

Computation over remote data

P

D

L

D'D' D''

Faulting

P

D

L

D''D'D'

Caching

P

D

L

D''D'D'

Locality of reference and identity

Systems "tricks" :

Caching

(locality in time)

P

D

L

D'

Caching approximates identity using time

D' D''

P

D

L

D'

And prefetching?

D' D''

Locality of reference and identity

Systems "tricks" :

Caching Prefetching

(locality in time) (locality in space)

P

D

L

D'

Prefetching approximates identity using space

D' D''D''

If you want identity, use identity!

P

D

L

D'D' D''

D'

Live process migration trivializes

P

D

L

S

P

D' S

Live process migration trivializes

P

D

L

S

P

D

L

S

Live process migration, too,
is just a rendezvous problem

D

Live process migration, too,
is just a rendezvous problem

P

D

L

S D

P

D S

The computer is wherever we can find it

Everything is data:
Identity enables system-level program analysis

1 <offset>

1 A rw-

2 B r--

O

FOT

A

Rethinking RPC

75

76

77

78

Wins

The code mobility of RPC

The data mobility of DSM

Data movement and computation placement as

infrastructure-level concerns

But what about sharing and synchronization?

(Immutability is the trivial case)

Multiplicity of Writers

∞
.
.
.
1
0

1: Multiplicity of Writers

∞
.
.
.
1
0

Trivial

Support Mechanisms:

Gossip
MSTs
Pub/Sub

2: "Hotness" in Frequency and Locality

 "Cold" ….. "Hot"
(infrequent / localily) (frequent / none)

2: "Hotness" in Frequency and Locality

"Cold" ….. "Hot"

Easy Support Mechanisms:

Partitioning
Caching

3: How objects are permitted to change

Immutable

Arbitrary change

Progressive

for example

A shared
library

A mutex

∞
.
.
.
1
0

"Cold" ….. "Hot"

Immutable

Arbitrary change

Progressive

3: How objects are permitted to change

Immutable

Arbitrary change

Progressive

Trivial

Progressive Objects

Identity enables system-level program analysis

P
D

D'

P'
D

D''

MD'

D'''

D''

How objects are permitted to change

Immutable

Arbitrary change

Progressive

Trivial

 Easy
Support Mechanism:

Optimistic, async replication

The hard stuff

Immutable

Arbitrary change

Progressive

∞
.
.
.
1
0

"Cold" ….. "Hot"

The hard stuff

If we were building an infrastructure

If we were designing a language

We are designing an operating system

The bad place

Hot Scorching

∞
.
.
.

many
Arbitrary change

The bad place

Hot Scorching

∞
.
.
.

many
Arbitrary change

A mutex

The bad place

Hot Scorching

∞
.
.
.

many
Arbitrary change

A mutex

?

?

?

Scaleable cache coherence?

Ideas:

Network as bus: OS/Network codesigns

Glue that makes it possible: global identity

The network is the bus?

Organizing computation

Inversion of lifetimes

Compute () and data ()

time

106

delete()

time

init()

107

Compute () and data ()

The nanotransaction (AKA Nando)

A bounded sequence of operations on references to persistent data

May invoke a data-dependent number of other nanotransactions

A unit of locality, atomicity, and mobility

Nandos think locally

Nandos only perform local computation over local data. Hence:

 They never wait (but they may speculate)

They never invoke coordination logic (e.g. 2-phase commit)

Nandos cut at the bones

Nandos ask little of the programmer

Only this: what are the boundaries of local computation?

Articulation

Articulation

What else?

The "TWISTED Stick"

Elephance, the memory company

Support

National Science Foundation

Defense Advanced Research Projects Agency

Intel

and gifts from Ebay and Meta.

What not where
Data lasts forever; computation comes and goes

Ready or not, far-out memory hierarchies are here

Follow the data

Thank you!

twizzler.io

Object A Object B

Object AObject B

Object C

X

Object
Global
Space

Object
Logical
Space

Physical
Memory

DRAM BNVM

Software sees global
space of ALL objects.

Hardware sees logical
space of currently
accessible, active objects

122

...

