VWhat not where

Peter Alvaro

an OPgrat.‘n, Sysrem For =
,"a, Qur /ﬂamor} Hierarchies

ok W

Outline

Twizzler

a. The state of the art

b. Trends: far out memories

c. The data-centric operating system
d. Organizing memory in Twizzler

e. Two case studies

Data-centric security

Distribution

Sharing - the good and the bad

A new programming model for long-lived data and short-lived compute

The state of the art

The state of the art

What are computers for?

The agent

AKA the process
AKA the ACTOR
AKA the host,

[--]

It's all about agents

What is a process?

Computation

Context required
to access data

OK, but what's a process really for?

The state of the art: Systems programming

The state of the art: Systems programming

Load é} %
Storage

SR S RS B SR N 8 R T ESST S

Memarj

The state of the art: Systems programming

Storage

R T e E SR e e L Bl @S o B R G R W TN

The state of the art: Systems programming

Storage

B @S e R R R N

Memar’

Seriali 2.0,
Deserialize
Q**D

The state of the art: Systems programming

Storage

e e

Meﬂlar)

Deserialize
éﬂn

The state of the art: Systems programming

Sfo rasje

B BT e R G o8 W T

Memr,

Deserialize

"Systems programming”

Database Management

Ramakrishnan -+ Gehrke

"Systems programming”

=1 }6,7 1st output run

Input file

2nd output run

2 Buffer pool with B:::4 pages

Figure 13.4 External Merge Sort with B Buffer Pages: Pass 0

Original relation

Partitions
o
2
-
000 000
B-1
L i =
Disk B main memory buffers Disk

Figure 14.3 Partitioning Phase of Hash-Based Projection

[1
f-t ,

R (Cmeur i l e
RN 2
| o) - !
| e [:—T-WLLJ — [oumur] |

" INPUT I'J p—— | 00 0
i vo0 | — _ourrur|
. e — | e |
- z —
Disk — block size Disk
i\ [wore |
[_INPUT K]

Figure 13.10 Double Buffering

Relations Rand S

— -

= OO0 - O
' ‘ "Hash table for block R
9 (k < B-1 pages)

S T, [T

Input buffer Output buffer
(to scan all of S)
Disk B main memory buffers

, -) [P ANON By Y , . e LN) PGS

Join result

P

[<

=

Disk

| PN, 1 P AR P S B T A S T

—_—

The memory hierarchy

Observe these wild trends

Trends

Persistent storage is getting ever closer

Memory is moving farther away

&

LOAD/STORE BYTE-LEVEL ACCESS

C)(L.memory

POOL

i === 0|
—ummmny == o

i == o\

—Himnmning == o]

One obvious point of inflection

sys_read
~100-300 ns ~1us ~1-10 ms
Growing, becoming persistent Outdated interface Cannot compute on directly
[\ 4 A\

V4

KKevpe/ kerngl

9
vimY vvm

Trends

Storage is CONVERGING?

Compute is DIVERGING!

Twizzler boils this ocean

No kernel-mediated 1/0O

Persistent data should be operated on directly and like memory

No transient pointers

Pointers should last forever and have the same meaning anywhere

"Data-centric” operating systems

Persistent data should be operated on directly and like memory

Pointers should last forever and have the same meaning anywhere

The death of the process

Organizing memory in Twizzler

Data Objects, references, context

~ 1

A B

il

object-id offset

Pointers may be cross-object: referring to data within a different object

Data Objects and references

FOT

Data

FOT entry

offset

Object layout

64-bits

Pointer layout

Dereference

data
object

Compatibility (but second)

direct access

(memory-style) application .
musl* libc :
' i
POSIX access 4 Linux syscall
- twix . i
(read/write) i emulation :
i i

metadata & FOT .

libtwz
management

create, delete, etc.

* userspace

* kernelspace

physical mapping

Twizzler kernel

view management,
pointer translation,
consistency primitives

object & thread
management, trusted
computing base

* modified musl to change linux syscalls into function calls

Some consequences

References are based on identity rather than location
Objects are self-contained and pointers never swizzle

A "galactic" 128-bit object space

Case studies

Key / value storage done right

Index Data
1 H ~— Lookup returns
\". direct pointers

250 lines of simple C code is all you need

Evolution 1: access control

Evolution 2: secondary indices

Index Index

@\ S =

Success: easier programming without a penalty

Latency (ns)
= =

(92} (@] ()]

o (e»)] (@]

()
1

Insert

BN std::un_map WM nvkv

B unixkv
B unixkv (m)

B nvkv (m)

Lookup

SQLite top

Porting SQLite

SQLite top

LMDB

SQLite top

Memory-mapped
files

unixkv

unixrbt

SQLite top

LMDB

Native

Linux

PMDK

SQLightning

Linux

twizkv

twizrbt

PMDK

Twizzler

Twiz

Transaction Rate
(normalized)

Not so shabby for legacy support

N
(@]
1

=
&)
1

=
o
1

2
&
1

.
o
L

ESQL-Native ESQL-PMDK
FSQL-LMDB BSQL-Twizzler

B C D E
YCSB Workload Specification

w L
1 1

N
1

Query Latency
(normalized)

Sort

Mean

BSQL-Native BSQL-PMDK
BESQL-LMDB BSQL-Twizzler

Median Index Find Probe
Query Operation

Security in a data-centric OS

Security Contexts

Protection information encoded as ordinary data objects
(containing cryptographically-signed capabilities)
Threads are associated with these security contexts.

Privilege is not accretive: a thread has one active security context.

Security Contexts

- _— Boby files

PA §8 Wod%

D‘,W h“Q

Security Policy

s directly created and manipulated by users

s interpreted by the kernel

s enforced by hardware

Security Contexts reify agency as policy

CAP

=

Capabilities and key management

Object O

target, accessor : ObjectID,

permissions, flags

gates
siglen

Length, sig : u8[],

default; ---
KUID: Ku —l_’

key generation

ObjectK Object Kn
default: r-- | default: -
can verify ; :
y . I
signs
CAP: rx Object0 [94----=--

BitField,
: Gates, revocation

Revoc,

DLG ::={
receiver, provider : ObjectID,
mask, flags : BitField,

gatemask : Gates, revocation : Revoc, siglen : Length, datalen : Length, (DLG|CAP), sig : u8[]

Bootstrapping AP @ o oT

login.elf _ alice.ctx bob.ctx
r-X- J2= =il -—-U
init.ctx : login.ctx i alice.ctx
default:— ' 2YUopl gefault:i— FIEY | default:--
gmask: --- gmask: --- gmask: rwx
lr-x r-;/ \
init.elf login.elf passwd brw-
default: r-- default: r-- default: —--
Y
shell.elf alice’s file
|_default: r-x | default: -

The death of the superuser

Secure Gated APls

Secure Gated APls

Protected library calls
System calls (but for userspace)

Agency, without the overhead of agents

/4 “OM/ /I-Lrai) ‘,'0 I/mP Frooru-s

>

:\M

For example: IPC without the kernel

g PR

ly
FF; vate Lorre ctq)

Use raw objects like shared memory?

Secure Gated APls

/4 “OW /”lr &l(l) ‘,'0 :)T/mf Prooru\\s

Secure Gated APls

Licessov
:ﬁéﬂmﬂu
TIA[Pl6] S
Tl\rgﬂ) [ée,rm‘ssiow Signatire
(Sfﬂf (A‘o'gﬂ
(7: IS L A\
(

Lengt),

Restricting jumps

bui r-x

Throughput, Log Scale (MB/s)

Communication links in userspace

10* 4

B queue

1 W queue-safe
10° 3 WM pipe-bar

102 3

10'
8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K64K
Buffer Size (bytes)

Distributing Twizzler

Computation

Computation

Computation

Computation

Computation over remote data

Faulting

Caching

Locality of reference and identity

Systems "tricks" :

Caching

(locality in time)

Caching approximates identity using time

*x

~

%

-~

And prefetching?

Locality of reference and identity

Systems "tricks" :

Caching Prefetching

(locality in time) (locality in space)

Prefetching approximates identity using space

% %

N 4

If you want identity, use identity!

h 4

Live process migration trivializes

~

Lo][]

Live process migration trivializes

-~

ﬁ% IS just a rendezvous problem %

Live process migration, too,

-

~

Lo][]

-~

~

-~

D

~

Live process migration, too,

% IS just a rendezvous problem %

-

~

~

-~

~

The computer is wherever we can find it

Everything is data:
Identity enables system-level program analysis

f] 1 | <offset>—|—
0
= ="l 1]|A| rw
2| B| r
FoT |
A

Rethinking RPC

Alice

Tiny Resovres

75

76

77

Tiny Resovrces

Bob

78

Wins

The code mobility of RPC
The data mobility of DSM

Data movement and computation placement as

infrastructure-level concerns

Don’t Let RPCs Constrain Your API

Daniel Bittman Robert Soulé
UC Santa Cruz Yale University
Pankaj Mehra Matthew Boisvert
IEEE Member UC Santa Cruz
ABSTRACT

As data becomes increasingly distributed, traditional RPC
and data serialization limits performance, result in rigidity,
and hamper expressivity. We believe that technology trends
including high-density persistent memory, high-speed net-
works, and programmable switches make this the right time
to revisit prior research on distributed shared memory, global
addressing, and content-based networking. Our vision com-
bines the code mobility of RPC with first-class data refer-
ences in a global address space by co-designing the OS and

the network around pervasive data identity. We have initial
dico-desi

Ethan L. Miller Vishal Shrivastav
UC Santa Cruz Purdue University
Pure Storage
Avi Silberschatz Peter Alvaro
Yale University UC Santa Cruz

remote procedure calls (RPC). Decoupling components with
RPCs allows them to scale independently—in principle, devel-
opers need only agree on a common interface and message
format to leverage the benefits of software decoupling. Yet,
in reality, RPCs enforce strict interface constraints and often
trade adaptability (narrow interfaces are harder to evolve)
for simplicity (narrow interfaces limit cross-component in-
teractions), ultimately hampering the goal of scalability.
The chief problem with RPCs is that they are fundamen-
tally location- and compute-centric: RPCs force a program-

mer to decouple an application by explicitly separating the
d

results showing the promise of the prop ign.

CCS CONCEPTS
« Software and its engineering — Operating systems;
Distributed sy izi i Abstraction,
modeling and modularity; « Hardware — Memory and dense
storage; Networking hardware; « Information systems —
Storage class memory.

ACM Reference Format:

Daniel Bittman, Robert Soulé, Ethan L. Miller, Vishal Shrivastav,
Pankaj Mehra, Matthew Boisvert, Avi Silberschatz, and Peter Alvaro.
2021. Don’t Let RPCs Constrain Your APL In The Twentieth ACM
Workshop on Hot Topics in Networks (HotNets °21), November 10-12,
2021, Virtual Event, United Kingdom. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3484266.3487389

1 INTRODUCTION

Modular design is the bedrock of modern software develop-
ment [24]. It improves programmer productivity by break-
ing design problems into smaller, re-usable parts that hide
implementation details and are more easily debugged. In dis-
tributed systems, module composition is often realized via

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

HotNets ‘21, November 10-12, 2021, Virtual Event, United Kingdom

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9087-3/21/11.
https://doi.org/10.1145/3484266.3487389

putational endpoint or location where a function is in-
voked from the location where the function executes. As a
consequence, they are well-suited to a relatively narrow set
of use cases in which function arguments (which flow from
invoker to executor) and returns (which flow back) must be
serialized and sent in their entirety, and hence are small, and
in which reference data must be located on the executor.
Many scenarios would benefit from decoupling but are
simply not feasible using existing RPC mechanisms. For ex-
ample, the invoking endpoint may have abundant data but
limited compute, the invoker may wish to traverse a remote
data structure, or the invoker may wish to refer to data that
they lack privileges to read. In Section 2, we discuss how the
increasingly important problem of distributed inference for
edge devices can suffer from all of these problems. Rapidly
growing model sizes, privacy concerns, and the proliferation
of last-mile model customizations all exacerbate the issue.
To mitigate the problem of location-centric RPCs, data cen-
ter operators often deploy discovery services, load balancers,
or other forms of middleware [9, 12, 20, 28, 31]. These extra
indirection layers make the execution endpoint abstract, but
at the cost of increased latency and added system complex-
ity. Moreover, we argue that such systems do not address
the fundamental problem, which is we need a more general
for module in distributed systems.
This mechanism must be more flexible than RPCs, but
not at the cost of simplicity or performance. Satisfying these
conflicting goals requires a shift in our programming models,
from location-centric abstractions such as RPC to data-centric
abstractions more akin to distributed shared memory (DSM).
These data-centric abstractions can free programmers from

But what about sharing and synchronization?

(Immutability is the trivial case)

Multiplicity of Writers

1: Multiplicity of Writers

Support Mechanisms:

Gossip
MSTs
Pub/Sub

2: "Hotness" in Frequency and Locality

"Cold" "Hot"
(infrequent / localily) (frequent / none)

2: "Hotness" in Frequency and Locality

Easy Support Mechanisms:

Partitioning
Caching

"Cold" ... "Hot"

3: How objects are permitted to change

Immutable

Progressive

Arbitrary change

A shared
library

for example

"Cold"

@ <« A mutex
Immutable
Progressive
Arbitrary change
|IHOtII

3: How objects are permitted to change

Trivial

Immutable

Progressive

Arbitrary change

Progressive Objects

9 ¥ bloom

SOHOTRIGHT
NOW

ldentity enables system-level program analysis

-

D

k

~

(- 2
D' | [y] /D"
hv
"

NS /

-

D

2

~

How objects are permitted to change

Trivial

Support Mechanism:
Easy

Optimistic, async replication

Immutable

Progressive

Arbitrary change

The hard stuff

Immutable

Progressive

Arbitrary change
"Cold" ... "Hot"

The hard stuff

If we were building an infrastructure

£
TRESPASSING |

!
y

If we were designing a language

We are designing an operating system

The bad place

/

Arbitrary change

many

Hot Scorching

The bad place

/

/< A mutex

Arbitrary change

many

Hot Scorching

many

The bad place

/

?

A mutex

Hot

Scorching

Arbitrary change

Scaleable cache coherence?

|deas:

Network as bus: OS/Network codesigns

Glue that makes it possible: global identity

The network is the bus?

Servers

-

Organizing computation

Inversion of lifetimes

Compute (

) and data ([])

time

106

Compute (| |)and data ([))

init()

time

|

|

\4

delete()

107

The nanotransaction (AKA Nando)

A bounded sequence of operations on references to persistent data

May invoke a data-dependent number of other nanotransactions

A unit of locality, atomicity, and mobility

Nandos think locally

Nandos only perform local computation over local data. Hence:
They never wait (but they may speculate)

They never invoke coordination logic (e.g. 2-phase commit)

Nandos cut at the bones

Nandos ask little of the programmer

Only this: what are the boundaries of local computation?

Articulation

struct Node { let rec aggregate = nano(|
value: u64; node: &Node, output: &Aggregator
neighbors: List<Node>; | {
}; if node in output.visited {
return;
struct Aggregator { }
sum: Counter; output.visited.insert(node);
visited: Set<Node>; output.sum += node.value;
} for neighbor in node.neighbors {
aggregate(neighbor, output);
(a) Objects }
s

(b)) Nanotransaction

Articulation

Host B

start_node

‘! (1) aggregate()
Alice
(2) aggregate()/ \\(2) aggregate()

) 4

Host C Host D

struct TripDetails { let book_trip = nano(|

user: &User; details: &TripDetails,
flight: &Flight; bk: &TripBooking,
hotel: &Hotel; | {
car: &Car; book_flight(details.flight,
} bk.flight_bk);
book_hotel (details.hotel,
struct TripBooking { bk.hotel_bk);
flight_bk: &FlightBooking; book_car(details.car, bk.car_bk);
hotel_bk: &HotelBooking; let trip_amt = /* bookings sum *x/;
car_bk: &CarBooking; charge_user(details.user.id,
payment: &Transaction; trip_amt, bk.payment);
} i

(a) Objects (b) Nanotransaction

What else?

The "TWISTED Stick"

Elephance, the memory company

<“r7 "\ Elephance)
| —_
| ‘

Daniel Bittman Peter Alvaro Achilles Benetopoulos Allen Aboytes

UC Santa Cruz UC Santa Cruz UC Santa Cruz UC Santa Cruz

Pankaj Mehra Darrell D. E. Long Ethan L. Miller George Neville-Neil

Support

National Science Foundation
Defense Advanced Research Projects Agency
Intel

and gifts from Ebay and Meta.

\What not where

Data lasts forever; computation comes and goes

Ready or not, far-out memory hierarchies are here

-ollow the data

Twizzler

Thank youl!

twizzler.io

