VWhat not where

Peter Alvaro



an OPgrat.‘n, Sysrem For =
,"a, Qur /ﬂamor} Hierarchies




ok W

Outline

Twizzler

a. The state of the art

b. Trends: far out memories

c. The data-centric operating system
d. Organizing memory in Twizzler

e. Two case studies

Data-centric security

Distribution

Sharing - the good and the bad

A new programming model for long-lived data and short-lived compute



The state of the art



The state of the art

What are computers for?

The agent

AKA the process
AKA the ACTOR
AKA the host,

[--]



It's all about agents




What is a process?

Computation

Context required
to access data



OK, but what's a process really for?



The state of the art: Systems programming




The state of the art: Systems programming
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The state of the art: Systems programming
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The state of the art: Systems programming
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The state of the art: Systems programming
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The state of the art: Systems programming
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"Systems programming”

Database Management

Ramakrishnan -+ Gehrke




"Systems programming”
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The memory hierarchy




Observe these wild trends



Trends

Persistent storage is getting ever closer

Memory is moving farther away
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One obvious point of inflection

sys_read
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Trends

Storage is CONVERGING?

Compute is DIVERGING!




Twizzler boils this ocean

No kernel-mediated 1/0O

Persistent data should be operated on directly and like memory

No transient pointers

Pointers should last forever and have the same meaning anywhere



"Data-centric” operating systems

Persistent data should be operated on directly and like memory

Pointers should last forever and have the same meaning anywhere



The death of the process




Organizing memory in Twizzler



Data Objects, references, context
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object-id offset

Pointers may be cross-object: referring to data within a different object



Data Objects and references

FOT

Data

FOT entry

offset

Object layout

64-bits

Pointer layout




Dereference




data
object

Compatibility (but second)

direct access

(memory-style) application .
musl* libc :
' i
POSIX access 4 Linux syscall
- twix . i
(read/write) i emulation :
i i

metadata & FOT .

libtwz
management

create, delete, etc.

* userspace

* kernelspace

physical mapping

Twizzler kernel

view management,
pointer translation,
consistency primitives

object & thread
management, trusted
computing base

* modified musl to change linux syscalls into function calls



Some consequences

References are based on identity rather than location
Objects are self-contained and pointers never swizzle

A "galactic" 128-bit object space



Case studies



Key / value storage done right

Index Data
1 H ~— Lookup returns
\". direct pointers

250 lines of simple C code is all you need



Evolution 1: access control




Evolution 2: secondary indices

Index Index
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Success: easier programming without a penalty
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SQLite top

Porting SQLite

SQLite top

LMDB

SQLite top

Memory-mapped
files
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Transaction Rate
(normalized)

Not so shabby for legacy support
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Security in a data-centric OS



Security Contexts

Protection information encoded as ordinary data objects
(containing cryptographically-signed capabilities)
Threads are associated with these security contexts.

Privilege is not accretive: a thread has one active security context.



Security Contexts
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Security Policy

s directly created and manipulated by users

s interpreted by the kernel

s enforced by hardware



Security Contexts reify agency as policy



CAP

=

Capabilities and key management

Object O

target, accessor : ObjectID,

permissions, flags

gates
siglen

Length, sig : u8[],

default; ---
KUID: Ku —l_’

key generation

ObjectK Object Kn
default: r-- | default: -
can verify ; :
y . I
signs
CAP: rx Object0 [94----=--

BitField,
: Gates, revocation

Revoc,

DLG ::={
receiver, provider : ObjectID,
mask, flags : BitField,

gatemask : Gates, revocation : Revoc, siglen : Length, datalen : Length, (DLG|CAP), sig : u8[]



Bootstrapping AP @ o oT

login.elf _ alice.ctx bob.ctx
r-X- J2= =il -—-U
init.ctx : login.ctx i alice.ctx
default:— ' 2YUopl  gefault:i—  FIEY | default:--
gmask: --- gmask: --- gmask: rwx
lr-x r-;/ \
init.elf login.elf passwd brw-
default: r-- default: r-- default: —--
Y
shell.elf alice’s file
|_default: r-x | default: -




The death of the superuser




Secure Gated APls



Secure Gated APls

Protected library calls
System calls (but for userspace)

Agency, without the overhead of agents
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For example: IPC without the kernel
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Use raw objects like shared memory?



Secure Gated APls
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Secure Gated APls
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Restricting jumps
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Throughput, Log Scale (MB/s)

Communication links in userspace
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Distributing Twizzler



Computation



Computation



Computation



Computation

__________




Computation over remote data

__________




Faulting




Caching




Locality of reference and identity

Systems "tricks" :

Caching

(locality in time)



Caching approximates identity using time
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And prefetching?




Locality of reference and identity

Systems "tricks" :

Caching Prefetching

(locality in time) (locality in space)



Prefetching approximates identity using space
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If you want identity, use identity!
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Live process migration trivializes

~

Lo ][]

__________

__________




Live process migration trivializes
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ﬁ% IS just a rendezvous problem %

Live process migration, too,

-

~

Lo ][]

-~

_________

__________

~

__________

-~

D

~




Live process migration, too,

% IS just a rendezvous problem %
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The computer is wherever we can find it




Everything is data:
Identity enables system-level program analysis
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Rethinking RPC
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Tiny Resovrces

Bob
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Wins

The code mobility of RPC
The data mobility of DSM

Data movement and computation placement as

infrastructure-level concerns



Don’t Let RPCs Constrain Your API

Daniel Bittman Robert Soulé
UC Santa Cruz Yale University
Pankaj Mehra Matthew Boisvert
IEEE Member UC Santa Cruz
ABSTRACT

As data becomes increasingly distributed, traditional RPC
and data serialization limits performance, result in rigidity,
and hamper expressivity. We believe that technology trends
including high-density persistent memory, high-speed net-
works, and programmable switches make this the right time
to revisit prior research on distributed shared memory, global
addressing, and content-based networking. Our vision com-
bines the code mobility of RPC with first-class data refer-
ences in a global address space by co-designing the OS and

the network around pervasive data identity. We have initial
dico-desi

Ethan L. Miller Vishal Shrivastav
UC Santa Cruz Purdue University
Pure Storage
Avi Silberschatz Peter Alvaro
Yale University UC Santa Cruz

remote procedure calls (RPC). Decoupling components with
RPCs allows them to scale independently—in principle, devel-
opers need only agree on a common interface and message
format to leverage the benefits of software decoupling. Yet,
in reality, RPCs enforce strict interface constraints and often
trade adaptability (narrow interfaces are harder to evolve)
for simplicity (narrow interfaces limit cross-component in-
teractions), ultimately hampering the goal of scalability.
The chief problem with RPCs is that they are fundamen-
tally location- and compute-centric: RPCs force a program-

mer to decouple an application by explicitly separating the
d

results showing the promise of the prop ign.

CCS CONCEPTS
« Software and its engineering — Operating systems;
Distributed sy izi i Abstraction,
modeling and modularity; « Hardware — Memory and dense
storage; Networking hardware; « Information systems —
Storage class memory.
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1 INTRODUCTION

Modular design is the bedrock of modern software develop-
ment [24]. It improves programmer productivity by break-
ing design problems into smaller, re-usable parts that hide
implementation details and are more easily debugged. In dis-
tributed systems, module composition is often realized via

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

HotNets ‘21, November 10-12, 2021, Virtual Event, United Kingdom

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9087-3/21/11.
https://doi.org/10.1145/3484266.3487389

putational endpoint or location where a function is in-
voked from the location where the function executes. As a
consequence, they are well-suited to a relatively narrow set
of use cases in which function arguments (which flow from
invoker to executor) and returns (which flow back) must be
serialized and sent in their entirety, and hence are small, and
in which reference data must be located on the executor.
Many scenarios would benefit from decoupling but are
simply not feasible using existing RPC mechanisms. For ex-
ample, the invoking endpoint may have abundant data but
limited compute, the invoker may wish to traverse a remote
data structure, or the invoker may wish to refer to data that
they lack privileges to read. In Section 2, we discuss how the
increasingly important problem of distributed inference for
edge devices can suffer from all of these problems. Rapidly
growing model sizes, privacy concerns, and the proliferation
of last-mile model customizations all exacerbate the issue.
To mitigate the problem of location-centric RPCs, data cen-
ter operators often deploy discovery services, load balancers,
or other forms of middleware [9, 12, 20, 28, 31]. These extra
indirection layers make the execution endpoint abstract, but
at the cost of increased latency and added system complex-
ity. Moreover, we argue that such systems do not address
the fundamental problem, which is we need a more general
for module in distributed systems.
This mechanism must be more flexible than RPCs, but
not at the cost of simplicity or performance. Satisfying these
conflicting goals requires a shift in our programming models,
from location-centric abstractions such as RPC to data-centric
abstractions more akin to distributed shared memory (DSM).
These data-centric abstractions can free programmers from




But what about sharing and synchronization?

(Immutability is the trivial case)



Multiplicity of Writers




1: Multiplicity of Writers

Support Mechanisms:

Gossip
MSTs
Pub/Sub




2: "Hotness" in Frequency and Locality

"Cold" "Hot"
(infrequent / localily) (frequent / none)



2: "Hotness" in Frequency and Locality

Easy Support Mechanisms:

Partitioning
Caching

"Cold" ... "Hot"



3: How objects are permitted to change

Immutable

Progressive

Arbitrary change



A shared
library

for example

"Cold"

@ <« A mutex
Immutable
Progressive
Arbitrary change
|IHOtII



3: How objects are permitted to change

Trivial

Immutable

Progressive

Arbitrary change



Progressive Objects
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ldentity enables system-level program analysis
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How objects are permitted to change

Trivial

Support Mechanism:
Easy

Optimistic, async replication

Immutable

Progressive

Arbitrary change



The hard stuff

Immutable

Progressive

Arbitrary change
"Cold" ... "Hot"



The hard stuff




If we were building an infrastructure
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If we were designing a language




We are designing an operating system







The bad place

/

Arbitrary change

many

Hot Scorching



The bad place

/

/< A mutex

Arbitrary change

many

Hot Scorching
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The bad place
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A mutex

Hot
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Arbitrary change






Scaleable cache coherence?

|deas:

Network as bus: OS/Network codesigns

Glue that makes it possible: global identity



The network is the bus?

Servers

-




Organizing computation



Inversion of lifetimes



Compute (

) and data ([])

time

106



Compute ( | |)and data ([))

init()

time

|

|

\4

delete()

107



The nanotransaction (AKA Nando)

A bounded sequence of operations on references to persistent data

May invoke a data-dependent number of other nanotransactions

A unit of locality, atomicity, and mobility



Nandos think locally

Nandos only perform local computation over local data. Hence:
They never wait (but they may speculate)

They never invoke coordination logic (e.g. 2-phase commit)



Nandos cut at the bones

Nandos ask little of the programmer

Only this: what are the boundaries of local computation?



Articulation

struct Node { let rec aggregate = nano(|
value: u64; node: &Node, output: &Aggregator
neighbors: List<Node>; | {
}; if node in output.visited {
return;
struct Aggregator { }
sum: Counter; output.visited.insert(node);
visited: Set<Node>; output.sum += node.value;
} for neighbor in node.neighbors {
aggregate(neighbor, output);
(a) Objects }
s

(b)) Nanotransaction



Articulation

Host B

start_node

‘! (1) aggregate()
Alice
(2) aggregate()/ \\(2) aggregate()

) 4

Host C Host D



struct TripDetails { let book_trip = nano(|

user: &User; details: &TripDetails,
flight: &Flight; bk: &TripBooking,
hotel: &Hotel; | {
car: &Car; book_flight(details.flight,
} bk.flight_bk);
book_hotel (details.hotel,
struct TripBooking { bk.hotel_bk);
flight_bk: &FlightBooking; book_car(details.car, bk.car_bk);
hotel_bk: &HotelBooking; let trip_amt = /* bookings sum *x/;
car_bk: &CarBooking; charge_user(details.user.id,
payment: &Transaction; trip_amt, bk.payment);
} i

(a) Objects (b) Nanotransaction



What else?



The "TWISTED Stick"




Elephance, the memory company
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Data lasts forever; computation comes and goes

Ready or not, far-out memory hierarchies are here

-ollow the data

Twizzler






Thank youl!

twizzler.io






